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Abstract: Smart city programs provide a range of technologies that can be applied to solve infrastructure problems associated with ageing
infrastructure and increasing demands. The potential for infrastructure and urban improvement remains unrealized, however, due to technical,
financial, and social constraints and criticisms that limit the implementation of smart cities concepts for infrastructure management. The
discussion presented here provides a review of smart technologies including sensors, crowdsourcing and citizen science, actuators, data
transmission, Internet of Things, big data analytics, data visualization, and blockchain, which can be used for infrastructure management.
Smart infrastructure programs are reviewed to explore how enabling technologies have been applied across civil engineering domains, in-
cluding transportation systems, water systems, air quality, energy infrastructure, solid waste management, construction engineering and
management, structures, and geotechnical systems. Gaps in the application of smart technologies for infrastructure systems are identified,
and we highlight how the civil engineering profession can adopt new roles toward the development of smart cities applications. These roles
are: (1) master designer: civil engineers can identify ready applications of enabling technologies to improve the delivery of urban resources
and services; (2) steward: civil engineers must account for both the environmental and societal impacts of smart infrastructure applications;
(3) innovator and integrator: civil engineers should integrate across diverse sectors and groups of experts to develop smart infrastructure
programs; (4) manager of risk: civil engineers should manage existing and growing risks of natural disasters, emergencies, and climate
change; they should also manage new vulnerabilities in the privacy and security of individuals and households that are introduced through
smart technologies; and (5) leader and decision maker: civil engineers can take a lead in smart infrastructure discussions and policy develop-
ment. DOI: 10.1061/(ASCE)IS.1943-555X.0000549. © 2020 American Society of Civil Engineers.

Introduction

Civil engineering infrastructure supports a range of everyday ac-
tivities in the urban environment, including using energy and
water, disposing of solid waste and wastewater, and travel. Built
infrastructure is ageing and failing to keep pace with current
and expanding needs across the US. The ASCE Committee on
America’s Infrastructure scored America’s infrastructure with a
D+ in 2017, based on a set of predetermined criteria that describe
infrastructure performance (ASCE 2017a). These criteria include
capacity, condition, funding, future need, operation, maintenance,

public safety, and resilience. A grade of D+ indicates that, at large,
infrastructure is in poor condition, with many components ap-
proaching the end of their service life and at high risk of failure.
The 2017 Infrastructure Report Card (ASCE 2017a) described the
condition of each of 16 infrastructure systems and assigns to each
system an individual grade. The rail system (which received a grade
of B in 2017) is the only infrastructure system that was scored with
adequate capacity to meet current needs. Bridges (C), inland water-
ways (D), ports (C+), dams (D), and levees (D) have reached the
end of their design life and are structurally deficient, leading to
congestion, delays in travel, and unnecessary risks to the public.
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Congested roads (D) are dangerous and waste time and fuel across
the nation, and aviation infrastructure and traffic control systems
(D) need repairs and upgrades, also leading to delays and conges-
tion in air travel. Transit systems (D−) have been chronically
underfunded and remain inaccessible to many Americans. Ageing
equipment, capacity bottlenecks, and increased demand in the en-
ergy system (D+) are likely to lead to longer and more frequent
power interruptions. Drinking water (D) and wastewater (D+) pipes
are reaching the end of their life span, resulting in pipe bursts,
environmental hazards, and compromised water quality. Many
hazardous waste sites (D+) are located near population centers or
in floodplains, and efforts are needed to reduce generation of
hazardous waste, reduce the energy and water requirements of
treatment technologies, and improve the resilience of hazardous
waste infrastructure to extreme weather. Solid waste (C+) is typi-
cally managed by the private sector and has been better funded
relative to other types of civil infrastructure, although new attention
is needed to re-envision waste as a resource. The maintenance
of many of these infrastructure systems affect how well parks
and recreation (D+) and schools (D+) meet the needs of the US
public.

Smart cities concepts have been presented as a tool to address
infrastructure problems and improve infrastructure performance
through technology-based solutions. At the core of smart cities
are information and communication technologies (ICT), which en-
able fast communication and processing of large volumes of real-
time data for optimized decision making. The integration of ICT
within urban systems enables the use of other smart technologies,
such as smart meters, real-time automated control systems, and per-
sonal devices to promote efficient and sustainable cities that simul-
taneously function as engines of economic growth (Harrison et al.
2010; Albino et al. 2015). This paper focuses on smart infrastruc-
ture programs as a subset of smart city programs that use smart
technology to improve the delivery of services and resources in
an urban context. For example, smart infrastructure programs
can be designed to collect and transmit real-time information about
travel times, water quality, waste services, and energy consumption
to adapt infrastructure operations and serve unexpected demands
(Harrison et al. 2010). The development of smart technologies
for infrastructure improvement has been motivated in part by the
ubiquity of ICT and the promise of new advanced solutions
(Kitchin 2014). Smart cities concepts are seen as a solution to mit-
igate the challenges of population growth and urbanization, which
are projected to continue as driving trends in the future, and of cli-
mate change, which will affect the performance of transportation
systems, energy systems, and water systems (ASCE 2019). Engi-
neering systems must be managed to meet growing demands, and
smart technologies offer a new approach to manage and distribute
infrastructure services and natural resources.

The development of smart city technologies has received a tre-
mendous amount of attention from both academia and industry. The
concept of smart cities has been studied for almost three decades,
with beginnings as urban ICT studies in the 1990s (Mora et al.
2017), and smart cities have continued to dominate urban planning
conversations in the recent past (Hollands 2008; APA 2015). Start-
up companies and corporations have invested heavily in developing
smart city technologies, and the global smart cities market size was
valued at USD 955.3 billion in 2017, with projected increases up to
USD 2 trillion by 2025 (Zion Market Research 2018).

Despite this attention and investment, the built infrastructure has
benefited only marginally from smart infrastructure programs and
remains in a state of significant deterioration with strong risk of
failure, as described by the ASCE Infrastructure Report Card.
Limited evidence exists to demonstrate that smart infrastructure

programs have improved levels of service, resource delivery, or
quality of life beyond narrow pilot projects (Smith 2017b; Malanga
2018). Although new internet-connected sensors have been in-
stalled at infrastructure systems, big data have been generated with-
out the means and capabilities to store, process, and learn from data
sets (Al Nuaimi et al. 2015). Accounting systems that are instru-
mented for transactional purposes can generate new data streams
about personal consumption of resources and vehicle-level traffic
patterns (Harrison et al. 2010), but decision-making agencies who
would use these data to improve efficiencies are inundated by a
deluge of data. Cities must have advanced tools to make sense
of massive, dynamic, varied, detailed, and interrelated data to gen-
erate novel insights (Kitchin 2014; Bibri and Krogstie 2018). For
example, San Diego, California, fitted streetlamps with cameras to
collect metadata about the number of people walking, biking, or
driving through busy intersections, yet 3 years after the systems
were installed, the data were not being used for parking, biking,
or pedestrian systems (Smith 2019). In some cities, new technol-
ogies have been introduced without support or adoption within a
community, and improvements in greenhouse gas emissions, en-
ergy efficiency, and travel times have been forfeited (Woetzel and
Kuznetsova 2018). In other cases, smart infrastructure programs
have been introduced without the transparency needed to protect
the security of citizens and democratic nature of cities above the
commercial interests of tech companies (Bliss 2019; Smith 2019).
Investment in new technologies, such as smart parking systems or
energy-efficient buildings have been promoted, while more urgent
urban problems, such as flooding hazards, inequitable access to
transit, and privacy concerns, are neglected (Grossi and Pianezzi
2017; Housing and Land Rights Network 2017; Gaffney and
Robertson 2018; Albert 2019; Barth 2019).

To successfully enhance infrastructure systems and the resour-
ces and services that they deliver, smart infrastructure programs
should be developed within the technical, political, economic,
and cultural contexts that shape the use and value of infrastructure
systems (Caragliu et al. 2011). Smart technologies must be used
appropriately within the context of infrastructure networks and
the communities who use them (Albino et al. 2015). New network-
ing technology, advanced software, and sensors must be designed
and adapted specifically to modernize decades-old infrastructure
systems, such as water and electric power distribution networks.

The goal of this paper is to review existing initiatives, explore
needs, and provide recommendations for smart infrastructure pro-
grams. Although many civil engineers are familiar with smart cities
concepts, they may not possess a full understanding of the range of
technologies and issues surrounding the implementation of smart
technologies within urban infrastructure and social networks. The
intent of this paper is to facilitate a new understanding of (1) the
technologies that are available; (2) efficiencies and new paradigms
that can be achieved through integrated programs that couple con-
nected devices, infrastructure, and the community; and (3) pitfalls
and challenges associated with smart city programs.

To that end, this paper reviews developments across civil engi-
neering domains to create a comprehensive overview and to reveal
a vision for the role of civil engineers in developing smart infra-
structure programs that address infrastructure deficiencies in the
US. First, an overview of the technologies that enable smart infra-
structure programs is provided. Technologies that are used widely
within civil engineering domains, such as sensing, and other tech-
nologies that are novel or emerging for infrastructure applications,
such as crowdsourcing and blockchain, are reviewed. Some tech-
nologies may be familiar for use in conventional settings, but ad-
vanced capabilities alter the way that these familiar technologies
can be used. For example, sensors that use Raspberry Pi have more
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capabilities than traditional sensors and can both record and process
large data sets before transmitting refined data. Next, existing smart
infrastructure programs within individual civil engineering disci-
plines, including energy, transportation, water, air quality, geotech-
nical systems, and construction management, are reviewed. This
review shows that projects span a range of applications, with vary-
ing degrees of development within domains.

Finally, the role of the civil engineer in developing smart infra-
structure programs is explored. Civil engineers have an extensive
and practical knowledge of the built infrastructure for guiding the
development of smart infrastructure programs. ASCE formulated a
vision for the civil engineering profession in 2025 (ASCE 2007)
and defined roles for the civil engineer, including master planner,
designer, constructor, and operator of the built environment; stew-
ard of the natural environment and its resources; innovator and in-
tegrator of ideas and technology across the public, private, and
academic sectors; manager of risk and uncertainty; and leader in
discussions and decisions shaping public environmental and infra-
structure policy. These roles are explored within the context of
smart infrastructure programs, and guidance is provided on how
civil engineers can be engaged to enable smart cities applications
that will positively impact infrastructure. Although the need for in-
frastructure improvement is demonstrated for the US, and the vi-
sion for the profession is framed using the roles specified by the
ASCE, the insights and guidance that are developed here transcend
location and can be applied across the globe. Infrastructure im-
provement is needed in developing and developed countries to im-
prove access to resources, livability, and urban resilience; and smart
city concepts and technology are being explored and implemented
worldwide. In addition, many of the examples and research studies
described as follows have been implemented at international lo-
cations. This review highlights opportunities for smart infrastruc-
ture programs and provides guidance in the development of smart
infrastructure programs for the international community of civil
engineers.

Smart Infrastructure Programs

The term smart city is used in literature and practice to describe a
wide range of diverse efforts (Hollands 2008; Caragliu et al. 2011;
Albino et al. 2015), from the use of augmented reality for enhanc-
ing museum exhibits (Ramos et al. 2018) to the use of real-time
measurement of traffic flow to adapt traffic lights and reduce con-
gestion (Mirchandi and Head 2001). Technology and policy inter-
ventions can be applied to many facets of urban living, and
applications include both hard and soft domains of urban planning.
As described by Neirotti et al. (2014), hard domains include: (1) en-
ergy grids; (2) public lighting, natural resources, and water manage-
ment; (3) waste management; (4) environment; (5) transport mobility
and logistics; (6) office and residential buildings; (7) healthcare;
and (8) public security. Soft domains include: (1) education and cul-
ture; (2) social inclusion and welfare; (3) public administration and
e-governance; and (4) the economy. This wide range of applications
lead to diverse uses of the term smart city.

To delineate smart infrastructure programs as a subset within
smart city initiatives, in this paper, smart infrastructure programs
are defined based on core components, which include: (1) con-
nected technologies that create interconnected networks; (2) the in-
frastructure system that is smartened; and (3) environmental
systems that provide essential services. Due to the sociotechnical
nature of smart technologies, the members of a community who
interact with and are served by infrastructure are an important
component of smart infrastructure programs, in addition to the

governing agency that implements and enables programs relying
on smart technologies (Caragliu et al. 2011; Neirotti et al. 2014;
Cosgrave 2018; Esmaeilian et al. 2018). Smart and connected tech-
nologies, such as cell phones and sensors, provide new means for
constituents to receive information about and access infrastructure
and environmental resources. Governing agencies can utilize ena-
bling technologies to receive real-time updates about resource con-
sumption and infrastructure performance. Government officials and
decision makers can also implement actuators using the Internet of
Things (IoT) to control infrastructure operations in real-time re-
sponse to smart meter data, with the goal of improving efficiency
and emergency response.

This review focuses on smart infrastructure programs by review-
ing enabling technologies and civil engineering infrastructure sys-
tems that are smartened (Fig. 1). Soft domains, listed previously,
and hard domains that are not studied within civil engineering
(e.g., public lighting, health care, and public security) are omitted
from the review.

Enabling Technologies for Smart Infrastructure

Smart infrastructure programs can be developed to solve infrastruc-
ture problems by connecting and integrating enabling technologies.
This section describes individual smart technologies and their capa-
bilities for use in smart infrastructure programs. The capabilities
and opportunities of technologies are described for sensors, crowd-
sourcing and citizen science, data transmission, actuators, the IoT,
big data analytics, data visualization, and blockchain.

Sensors

Sensors are the main source of data acquisition for smart cities; they
are devices that can detect or quantify gradients and properties in
the environment and convert parameters to an electronic signal
(Hancke et al. 2013). Sensors are electronic subsystems that trans-
mit collected data to computation nodes in a network, effectively
functioning as the interface between the tangible world and intel-
ligent control systems. Sensors may be affixed to nodes that per-
form data computation to transmit transformed data and may be
connected wirelessly or through a wired network. Sensors may
be fixed or mobile; the type of connection and the mobility of sen-
sors can affect the type of data that is transmitted and the frequency
of reporting data.

Sensors have a wide range of applications for smart infrastruc-
ture programs. Some smart infrastructure applications deploy tradi-
tional sensors, such as those that measure temperature and pressure,
whereas others experiment with advanced devices such as infrared
sensors, visual sensors, accelerometers, Global Positioning Sys-
tems (GPS), and other localization sensors. A list of several com-
monly deployed sensors for smart infrastructure is given in Table 1
to provide guidance about available sensor technologies that
monitor parameters of interest in managing civil engineering infra-
structure. Sensor characteristics, including the range of cost and
detection limits, can constrain the placement of sensors and their
application for managing infrastructure systems. Recent develop-
ment in sensors has led to an increasing amount and frequency
of data collection. For example, the resolution and frame rate of
cameras that are used as sensors has increased significantly. Current
technology can capture 4K video with high frame rates (60 frames
per second) (Marjani et al. 2017; Chen et al. 2014). Multiple sen-
sors may be placed at one sensor node to monitor complicated phe-
nomena called composite events, which require sensing of multiple
environmental properties (Gao et al. 2015).
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Fig. 1. Smart infrastructure programs use enabling technologies to allow a community and governing agencies new ways to monitor, access, and
control infrastructure services and environmental resources.

Table 1. Sensors used in smart infrastructure applications

Sensor type Sensed parameter Infrastructure domain Cost ($) Detection limit Website

Temperature Temperature All domains 1–1,000þ −40°C gearbest.com
testequipmentdepot.com

Pressure Pressure All domains 10–1,000þ 0 Pa google.com/shopping, galco.com
Flow Flow rate Water systems 112 0 m=s vernier.com
Water quality pH Water systems 14–956 0–14 amazon.comfishersci.com

Nitrates 189 1 mg=L vernier.com
DO 209–1,997 0 mg=L vernier.com, hach.com
Conductivity 3–750 0 μ S=cm hackaday.io, onsetcomp.com
Ammonia 189 1 mg=L vernier.com
Oxidation-reduction
potential

99 — vernier.com

BOD 1,500 5 ppm thomassci.com
COD 1,800 5 mg=L alibaba.com

Air quality O3 Air quality 50–1,500 5 ppb epa.gov
NO2 50–1,500 5 ppb
SO2 50–1,500 50 ppb
CO 100–2,500 5 ppm
PM2.5 25–2,500 0.3 μm

Digital imaging Image All domains 15–1,000+ — semiconductorstore.com, thorlabs.com
Positioning Location, acceleration,

orientation
Structures, transportation,
solid waste, construction

20–1,000+ — robotshop.com

Humidity Humidity All domains 1–500 — google.com/shopping
Energy Consumption Energy 299–349 — sense.com
Strain gauge Strain Structures, Geotechnical,

Construction
3–1,000+ — ebay.com, certifiedmtp.com

Navigation GPS All domains 13–600 1 cm amazon.com, swiftnav.com
Radiation Infrared All domains 10 550–1,000 nm adafruit.com

Note: DO = dissolved oxygen; ppm = parts per million; ppb = parts per billion; and PM2.5 = atmospheric particulate matter.
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Sensor nodes operate in three modes: data gathering (sensing
unit), data analysis (microcontroller or microprocessor unit), and
data transmission (transceiver unit) (Kocakulak and Butun 2017).
Sensor nodes that are capable of data analysis can preprocess data
captured by sensors before transmitting data to a receiver. Sensor
nodes may be equipped with a microcontroller or microprocessor to
analyze sensor unit data and react accordingly. Microcontrollers
or microprocessors that can be installed at sensor nodes include
devices that range in price, computational power, and power con-
sumption (Kocakulak and Butun 2017). A list of microcontrollers is
provided in Table 2 to provide some comparison across these
characteristics.

Ubiquitous harvesting of infrastructure and environmental data
is limited in part by sensor technology because most individual sen-
sors monitor one parameter or a narrow set of characteristics, and
collection points are often sparsely located at fixed stations (Alvear
et al. 2018). Data collected at these points provide only coarse-
grained details about the system, missing finer details such as those
that describe real-time human interactions with the infrastructure.
Environmental and infrastructure systems, such as roadways, water
networks, hydrologic networks, and the atmosphere, span extensive
geographic areas, and data should be collected at numerous loca-
tions throughout a system to capture its true complexity. Sparse
data extraction can diminish the value of the data, and enlarging
the sensor network may come at a prohibitive cost. Further, real-
time sensors for water quality parameters, for example, biochemi-
cal oxygen demand (BOD) and chemical oxygen demand (COD),
require frequent calibration and monitoring, which can increase the
operational and maintenance burden (Mukhopadhyay and Mason
2013). Vandalism and poor weather are also a concern with sensors
that are placed in the open (Karunaratne et al. 2017), and protective
encapsulation may be required for some conditions. Although ad-
vancements have been made, wireless sensors are constrained by
limited battery power, short communication range, and low band-
width (Yick et al. 2008).

Crowdsourcing and Citizen Science

Crowdsourcing and citizen science offer a new paradigm for data
collection in environmental and infrastructure systems through the
use of participatory and mobile data collection platforms (Mueller
et al. 2018). Wireless networking and cloud computing enable mo-
bile data collection platforms that can be accessed by a distributed
set of users, or citizens. Crowdsourcing programs collect data from
volunteers, who contribute personal resources, such as data or com-
puting power. For example, social media data were crowdsourced
from Twitter during the 2010 BP Deepwater Horizon oil spill and
analyzed to determine how information about the oil spill and its
impacts moved through the internet (Starbird et al. 2015). Citizen
science programs deploy citizens to collect scientific data by con-
ducting field experiments and operating equipment. Citizen science
includes a feedback mechanism, where citizen scientists, after
contributing their findings to a pool of knowledge, receive new
information. This feedback can be especially effective in smart

infrastructure programs, in which citizens can learn about infra-
structure and the environment to optimize or improve individual
access to services and consumption of resources (Buytaert et al.
2014). Both crowdsourcing and citizen science can be used as po-
tential data sources to better monitor and maintain environmental
and infrastructure systems (Welvaert and Caley 2016).

Crowdsourcing provides a means to collect environmental
and infrastructure data from internet and social media platforms.
Crowdsourcing gives civil engineers access to readily available
data that provide a low-cost resource to better inform models,
policies, and community programs around the built infrastructure.
Citizen science may differ from crowdsourcing in that citizen sci-
ence programs provide a more structured process for obtaining field
data from citizens. The structured organization of citizen science
programs allows civil engineers to extract specific data with a direct
purpose in planning and managing infrastructure. Citizens may also
benefit by gaining familiarity with simple field experiments that
measure the quality of the environment that surrounds them or
the state of the infrastructure they use.

The benefits produced by crowdsourcing and citizen science
programs have been limited by several key challenges. Given
the difficulty of some data collection procedures and the require-
ment for sophisticated equipment, field experiments conducted by
citizens are restricted in scope and produce data for only a small list
of useful characteristics (Buytaert et al. 2014; Alvear et al. 2018).
These programs also often lack an adequate number of users (Hoh
et al. 2012), which leads to sparse data extraction that may only be
marginally useful in studying large systems. Additionally, these
programs can suffer from false and inaccurate reporting by dishon-
est users (Zhang et al. 2014). Crowdsourcing and citizen science
programs should create information feedback loops in communities
that result in smart and environmentally conscious citizens (Buytaert
et al. 2014). Many crowdsourcing and citizen science programs fail
to effectively channel new knowledge back to citizens, limiting the
potential for innovation in community sustainability (Wildschut
2017).

Data Transmission

Data transmission is the means and methods that are used to move
data from the point of collection to a database where they can be
stored and analyzed (Hancke et al. 2013). Wired technologies such
as digital subscriber line (DSL), cable TV, power line communica-
tions, and local area networks (LANs) are less vulnerable to inter-
ference and performance stability issues, as compared with wireless
technologies. Metropolitan-area networks (MANs) and wide-area
networks (WANs) are larger than LANs, spanning an entire city,
campus, or region. Cables, however, must be installed, which limits
the ubiquity and flexibility of wired sensors. Wireless data trans-
mission technologies have emerged to improve the volume of data
that is transmitted and the distance over which data can be com-
municated. Wireless technologies provide communication capabil-
ities that enable a large number of sensors placed without the need
for cables. For sensor nodes that are designed to operate and collect

Table 2. Main hardware for data analysis on sensor nodes

Hardware property Microcontroller Raspberry Pi zero w Raspberry Pi 3 Intel Galileo Jetson TX2

Price $0.1–$20 $10–$30 $30–$60 $80 $600
Size Varies [10.7 × 7.1 × 14.7 cm

(4.2 × 2.8 × 5.8 in:)]
8.6 × 5.8 × 2.0 cm
(3.4 × 2.3 × 0.8 in:)

8.6 × 5.8 × 1.8 cm
(3.4 × 2.3 × 0.7 in:)

10.7 × 7.1 × 14.7 cm
(4.2 × 2.8 × 5.8 in:)

17.0 × 17.0 × 5.1 cm
(6.7 × 6.7 × 2 in:)

Data transmission module — Bluetooth/Wifi/LAN Bluetooth/Wifi/LAN LAN Bluetooth/Wifi/LAN
Data computation power Limited Low Medium Medium High
Power consumption MicroWatts 0.29 W 0.4–1.2 W 1–2 W 2.65 W 15 W
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data over long periods of time, low-power wireless area networks
(LPWANs) can enable wireless technologies to communicate ef-
ficiently and satisfy network requirements (Hancke et al. 2013;
Zanella et al. 2014).

The capabilities and limitations of major wireless data transmis-
sion technologies are described as follows, and Table 3 provides a
summary of their characteristics:
• LoRa (long range) is a promising technology for long-range

data transmission for smart infrastructure applications. LoRa
is a low-power, long-range wireless chipset that is used in net-
works across the globe (Chiani and Elzanaty 2019).

• Dash7 is designed to transmit over long distances for low-power
sensing applications (Weyn et al. 2015). Compared with other
technologies, such as IEEE 802.15.4-based networks, Dash7
has lower frequency and allows better penetration. Dash7
gained attention through large investments that were made for
military purposes. Dash7 can penetrate walls, windows, and
doors, with potential applications in smart energy, building
automation, and access control.

• IEEE 802.15.4-based devices (such as ZigBee) facilitate data
transmission in smart city applications for low-power consump-
tion nodes (Lee et al. 2007). IEEE 802.15.4-based devices can
send and receive data at each node. This feature enables an
IEEE 802.15.4-based network to create a peer-to-peer connec-
tion, in which nodes transfer data to nearby nodes. As a result,
a node can communicate with any other node in the network
(Sadeghioon et al. 2014).

• Bluetooth is a wireless technology for data transmission over
short distances. The benefit of Bluetooth technology is that it
supports high bandwidths for data transmission.

• 3G, 4G, and 4G long term evolution (LTE), where 3G and 4G
are the third and fourth generation of wireless mobile telecom-
munication technologies. Both 3G and 4G are widely used
across the globe and are available in developed and developing
countries. These technologies incur high power consumption
and relatively high data costs.

• Radio-frequency identification (RFID) and near-field communi-
cation (NFC) technologies are designed for short-range data
transmission. These technologies are not energy-intensive, but
their range of transmission is limited. For instance, RFID enables
locating and tracking objects in a smart city (Ni et al. 2011), and
NFC is used for facilitating guided tours (Boes et al. 2015).

• 5G is the fifth-generation cellular network technology. This
technology achieves both high bandwidth (þ500 Mbit=s) and
low latency (10 ms) (Parvez et al. 2018). 5G is expected to be
widely used for IoT and enterprise networking.

• Wi-Fi is the IEEE 802.11 standard for high-speed data trans-
mission over short distances and has relatively high power
consumption.

• Other additional technologies, such as Z-wave, Thread, ANT+,
SIGFOX, LTE-M, and EC-GSM, enable data transmission.
Data transmission technologies are nearly ubiquitous in smart

infrastructure programs (Yaqoob et al. 2017) because smart cities
are typically grounded in ICT, but two main limitations should be
addressed to improve solutions for data transmission. The first limi-
tation of data transmission is low bandwidth. With the growth of
connected and smart sensors, an increasing volume of data is trans-
ferred over internet networks. Transmitting large data sets of obser-
vations generated at sensors requires technology that is capable of
transferring data fast and securely. The second limitation in data
transmission is area coverage and the range of transmission. Net-
works should provide reliable coverage over a large area and send
big data over long distances to adequately monitor large infrastruc-
ture systems and ensure that data reach centers where they can be
processed, analyzed, viewed, and used in decision-making proc-
esses. Overcoming these limitations can increase the adoption of ad-
vanced technologies for smart infrastructure programs.

Actuators

Actuators function together with sensors to react to changes in envi-
ronmental or system conditions; they are devices that put compo-
nents of infrastructure into automatic action based on data collected
by sensors (Perera et al. 2017). Whereas other technologies ob-
serve, collect, transmit, manage, and analyze data, actuators give
managers the ability to mechanically respond to system changes
without human interaction. Smart cities projects have developed
actuators to adapt building lighting and temperature controls in re-
sponse to brain signals of workers (Al-Hudhud et al. 2019) and to
shut off gas and electricity when a fire is sensed (Park et al. 2018).
By replacing human decision making and reaction with actuators,
response time can be reduced in the case of disasters, and monoto-
nous labor can be executed automatically.

Actuators can be applied to enhance the management of infra-
structure that span large geographic areas, such as transportation
networks, watersheds, and water distribution systems. For example,
the use of actuators in combination with magnetic or wave-based
sensors to efficiently operate traffic signals are common (Hussian
et al. 2013). Actuators are also commonly used, for example, to
automatically manipulate pumps in water distribution systems in
response to changing levels in water storage tanks (Ormsbee and
Lansey 1994). There is a limited number of integrated smart sys-
tems that collect and transmit big data from distributed sensors,
analyze data to select operational decisions, and automatically en-
act operations using actuators.

The remote automation that actuators provide can create new
potential for catastrophic failures. Accidental network failures
can occur, which may trigger actuators at unintended times or fail
to trigger actuators when needed. Because infrastructure systems

Table 3. Overview of wireless data transmission technologies

Technology Standard Frequency
Penetration
(MHz) Range

Advantages and
disadvantages Bandwidth

LoRa Various 433 Low Several kilometers Low bandwidth 50 kbps
Dash7 ISO/IEC 18000–7 433 High 1 km 200 kbps 200 kbps
Zigbee IEEE 802.15.4 868/915/2,400 Low/High 100 m Mesh network 250 kbps
Bluetooth IEEE 802.15 2,483.5 Low 100 m 800 kbps 800 kbps
3G Various 700–2,600 Low/high Several kilometers High bandwidth 3.6–21 Mbps
4G/4G LTE 3GPP-LTE 700–2,600 Low/high Several kilometers High bandwidth 100 Mbps+
NFC/RFID ISO/ICE 18092 13.56 High 10 cm 106–424 Mbps 106–424 Mbps
5G Various 700–2,600 Low/high Several kilometers High bandwidth 500 Mbps+
Wi-Fi IEEE 802.11 2,400 Low 32 m 1,300 Mbps 1,300 Mbps
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may involve multiple complex subsystems, the dynamics of civil
infrastructure systems may not be adequately understood or con-
trolled to maximize utility from actuators. Infrastructure decisions
may require input from several subsystems that are sensed using
diverse technology and generate diverse types of data. Data analyt-
ics and control processes must be designed in a robust framework to
integrate diverse data types from multiple sensors while allowing
for lost data and malfunctioning communication networks. The use
of actuators may also introduce new security concerns because in-
frastructure components could be operated remotely. Any vulner-
abilities in the cybersecurity of communication networks may open
the door for malevolent actors to manipulate actuators and cause
damage.

Internet of Things

The IoT is the connection of common objects that are embedded
with internet connection to transmit and receive data. The IoT ex-
tends the application of the internet beyond computers to share
data, visualize data, and remotely control devices and appliances.
The IoT architecture in an urban area includes the web service and
the link layer (Zanella et al. 2014). The web service is similar to
traditional web services and maintains the connection between end
users and service providers. The link-layer technology connects
peer nodes that are spread over a wide geographical area. Nodes
in an IoT network may include sensors, actuators, machines, and
active components in utility systems, among others; these are con-
nected by the link layer through an internet connection. The link
layer may use unconstrained technologies, such as a LAN, MAN,
and WAN communication, or constrained technologies, such as
Bluetooth, NFC, and RFID. Unconstrained technologies are reli-
able and fast but have high energy requirements, whereas con-
strained technologies have low transfer rates and consume less
energy. IoT-based tools have been demonstrated for mitigating con-
gestion (Lee and Park 2013), smart parking (Lee and Park 2013),
smart city lighting (Zanella et al. 2014), environmental protection
(Al-Ali et al. 2010), and structural health monitoring (Mahmud
et al. 2018).

The IoT has the potential to serve as the digital backbone for
interoperable and integrated infrastructure systems. For example,
vibration and deformation sensors can be used in an IoT network
to remotely monitor the health of structures. The network architec-
ture makes short-time period reporting possible through continuous
data sharing for buildings and bridges (Lynch and Loh 2006). IoT
can seamlessly incorporate a number of heterogeneous systems,
providing easy open access to subsets of data to support digital
services (Zanella et al. 2014). Information that is produced by sen-
sors placed at civil infrastructure can be shared across platforms
and applications to construct a common operating picture of the
urban network (Jin et al. 2014); this will allow decision makers
to prioritize city services. A standardized and uniformly adopted
platform can create new abilities in evaluating the nexus between
urban utilities and the environment by logging in real-time the state
of interconnected infrastructure components in connected data-
bases. Cell phone GPS devices can also be used as part of the
IoT with a 3G/4G/LTE cellular network connection to aid in smart
mobility services, such as advanced roadway incident alerts (Li
et al. 2009; Lee and Park 2013).

In addition, the application of RFID and NFC enables an IoT
network to become an electronic verification system, for tracking
parking spots (Zanella et al. 2014) or locating products in various
stages of a supply chain system (Jin et al. 2014). Security and city
surveillance systems can be equipped with wireless sensor networks
(WSNs) and widespread mobile ad hoc networks (MANETs) to

enable high-speed data transfer. The combination of WSN and
MANET connections can solve the issues of IoT related to band-
width and energy (Bellavista et al. 2013).

Despite promising advances in automated control and connec-
tivity, IoT platforms can also create new privacy and security vul-
nerabilities. These systems often have ill-defined parameters, are
highly dynamic, and connect heterogeneous devices and commu-
nication protocols (Bertino et al. 2016). Heterogeneity can create
difficulties for system administrators in more basic tasks, such as
updating security patches, while simultaneously widening attack
windows for malicious threats (Covington and Carskadden 2013).
Connected devices are frequently left unattended, leaving them
open for physical attacks or vandalism (Conzon et al. 2012). Fur-
ther, platforms with open-source access encourage cyber vandalism
when devices are deployed with little or no encryption (Patton et al.
2014). Integration of interoperable systems creates threats for IoT
systems by complicating access control and allowing attackers to
introduce compromised systems into the network environment
(Covington and Carskadden 2013). Many devices that are added
to IoT networks lack the necessary sophistication to allow for com-
plex security schemes (Conzon et al. 2012).

Big Data Analytics

Big data analytics refers to the integration of tools, techniques, and
technologies to inspect, clean, transform, model, analyze, and in-
terpret substantial amounts of heterogeneous data. Big data analyt-
ics applies sophisticated and dedicated software applications to
transform large quantities of urban data into useful knowledge
for well-informed decision making and enhanced insights for utility
systems and municipal services. The aim of analytics is to elicit
useful information, hidden patterns, correlations, and other insights
in the data to improve or change operations, strategies, practices,
and services that benefit citizens (Bibri and Krogstie 2017b). These
tasks are beyond the limit of traditional analytical systems (Katal
et al. 2013; Khan et al. 2014) due to the high volume, high variety,
high velocity, and high veracity of big data associated with smart
cities applications.

Techniques and algorithms used for big data analytics improve
upon existing methods for data analysis by handling extreme vol-
umes of data, a wide variety of data types, and time constraints on
data processing. Current methods for data analysis, such as data-
mining algorithms, are unfit for handling big data because they are
designed to deal with limited and well-defined data sets (Wu et al.
2014). A number of data processing platforms provide the capabil-
ities required for real-time streaming big data applications. Leading
platforms for big data storage, processing, and management include
Hadoop MapReduce, IBM Infosphere Streams, Stratosphere, Spark,
and NoSQL-database system management (Khan et al. 2013; Al
Nuaimi et al. 2015). These platforms provide high performance
computational and analytical capabilities such as data selection, pre-
processing, transformation, mining, evaluation, interpretation, and
visualization; additionally, they have the ability to store, coordinate,
and manage large data sets across distributed environments.

Artificial intelligence (AI) technology creates value for big data
applications by providing decision makers with intelligent analysis
of their data; AI aides the discovery of underlying subsystems from
the array of structured and unstructured data (O’Leary 2013). Tra-
ditional AI frameworks along with statistical learning and deep
learning frameworks can be used to enhance big data applications.
The most important advantages that AI can bring to big data ap-
plications in the future are natural language processing, complex
multimedia computing, and powerful computational modeling of
the visual domain (Zhuang et al. 2017).
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Gaining valuable insight from big data analytics can be chal-
lenging because large urban data sets often contain inconsistent,
incomplete, and noisy data (Chen and Zhang 2014). Building
knowledge through big data analytics can also be difficult with
cleaned data because advanced data visualization techniques may
be required to create a complete view of the data (Wang et al. 2015).
AI may be used to identify and clean so-called dirty data and cap-
ture structured interpretations from a variety of unstructured data
(O’Leary 2013). AI is currently limited in its ability to process un-
structured data from audio and video sources (Verma et al. 2016).
Future applications of AI for smart infrastructure can utilize image
classification to identify, for example, pedestrians and vehicles on a
city street, debris in stormwater sewer pipes, and progress on a con-
struction site. Currently, there are significant limitations on using
AI, or deep learning, for real-world, unmodified, and naturally oc-
curring images because classifiers rely heavily on color, texture,
and background (Hendrycks et al. 2019). Further work in the de-
velopment of deep learning is needed to create robust classifiers for
smart infrastructure applications.

Many implementations of AI algorithms work on a single ma-
chine; big data analytics requires AI implementations to scale to
distributed clusters of machines (O’Leary 2013). Techniques and
algorithms designed for big data analytics need to be further ex-
ploited, enhanced, and extended to extract knowledge about urban
patterns for improving municipal services.

Data Visualization

Although big data can provide knowledge about key patterns hid-
den within data, the high complexity and high dimensionality of
data sets produced in smart city applications create challenges in
understanding underlying relationships (Donalek et al. 2014). Data
visualization techniques can be an important tool in addressing dis-
covery challenges through meaningfully representing and visualiz-
ing data in an interactive platform to facilitate communication and
decision making among smart city stakeholders and to create new
opportunities that involve citizens in smart urban planning and
design.

Capabilities

Digital Twin. Smart infrastructure programs produce a large
amount of data that are represented in a number of forms, such
as tables, graphs, real world scenes, three-dimensional (3D) mod-
els, and annotations and augmentations on two-dimensional (2D)
maps. The complexity and heterogeneity of these data forms re-
quire management systems that extend beyond common database
functionalities to foster effective visualization. New multimedia
technologies have been developed to meet these requirements
through a paradigm of data representation known as the digital
twin, which is a virtual representation of a physical system (El
Saddik 2018). The digital twin introduces new opportunities for
managing networks of buildings and infrastructures through 3D
models with embedded information, such as spatiotemporal infor-
mation, building or system property, and interdependencies
(Mohammadi and Taylor 2017).

A digital twin can be implemented as a cloud-based cyber-
physical system to represent an exact copy of the physical system;
the cyber-physical system can be used to analyze and update sub-
processes in the physical system (Alam and El Saddik 2017). A
digital twin reference model can be combined with an immersive
visualization platform to project details of the physical system into
a virtual environment using virtual-reality or augmented-reality ap-
plications (Daniel and Doran 2013; Donalek et al. 2014); this com-
bination allows system operators and stakeholders to view a digital

representation of the physical system in real-time and change sys-
tem parameters adaptively. The concept of creating a digital twin of
an infrastructure system has advanced along with the IoT as it auto-
matically brings smart sensor data into the digital twin for stake-
holders to analyze and manage information (Marr 2017).
Immersive Visualization Platforms. Advances in visualization
platforms have enabled many virtual-reality and augmented-reality
applications for smart infrastructure programs. Cave automatic vir-
tual environment (CAVE) is a virtual environment that is sur-
rounded by walls, and multiple projectors project a continuous
scene around users. Virtual-reality headsets and head-mounted dis-
plays (HMDs) show virtual and augmented scenes. These headsets
are fitted with sensors, such as a gyroscope, accelerometer, and
magnetometer to track the movement of a user’s head. Mixed-
reality headsets are similar, with the exception that 3D models
and information are augmented on a live scene, enabling field ap-
plications, such as facility management (Ammari and Hammad
2014). Mixed-reality headsets can be used to share visuals between
field engineers and collaborators in remote offices (Li et al. 2018;
Balali et al. 2018; Noghabaei et al. 2019). City officials in an im-
mersive environment (e.g., placed in a CAVE or wearing HMDs)
can communicate better and make informed decisions in a shared
virtual and immersive environment.

Advances in human–computer-interaction (HCI) provide an ad-
ditional level of interaction for visualization technologies. In the
past, users interacted with 2D visualization platforms (i.e., com-
puter screens) through a mouse and keyboard, querying a database
to generate graphs and tables. Now, users can interact directly with
virtual and augmented reality platforms by manipulating data
and 3D models. Brain–computer interfaces track neural signals
(Abdulkader et al. 2015); eye-tracking devices detect eye move-
ments (Sidorakis et al. 2015); and virtual-reality headset controllers
and haptic sensing systems track hand movements (Yem and
Kajimoto 2017; Viitanen et al. 2018). This additional level of in-
teraction enhances the sense of immersion and can improve the user
experience. Virtual reality and augmented reality have been applied
through immersive visualization platforms for smart healthcare,
transportation management, energy systems design, first-responder
training, and urban planning (Mohr 2017).

New data visualization techniques allow both decision makers
and citizens to engage in smart urban planning. A framework for
citizen participatory planning can be created by integrating a digital
twin with an immersive visualization platform. Using the digital
twin reference model, citizens can interact with existing and pro-
posed smart infrastructure at planned municipal events or in the
comfort of their own homes; they can explore features of public
infrastructure and provide feedback to city managers. For example,
graphs show queue profile estimation in urban traffic (Ramezani
and Geroliminis 2014), spatial distribution of transit-related activ-
ities can be projected on a map (Miller 2017), and augmented real-
ity information can be projected onto a real world scene (Rashid
et al. 2017).
Tangible User Interface. Participatory urban planning and mod-
eling can also be accomplished through geospatial tangible user
interfaces (TUI) (Maquil et al. 2018). TUI is an emerging approach
for human–computer interaction with geospatial systems, where
users manipulate a physical surface or landscape that represents
real space and monitor the changes to the system that are projected
onto the surface (Ratti et al. 2004). Tangible landscape is an appli-
cation of TUI that interactively couples physical and digital models
of an artificial landscape so users can explore, model, and analyze
geospatial data in a collaborative environment (Tabrizian et al.
2016). TUI enable an experimentation-based learning process that
couples creative modeling with geospatial analysis and may lead to

© ASCE 03120001-8 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2020, 26(2): 03120001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
 o

n 
04

/1
1/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



highly innovative infrastructure solutions that are well grounded in
science (Petrasova et al. 2014).

Limitations
Although there are many prototypes and illustrations of smart visu-
alization, there are limited reports of real-world implementations
for smart infrastructure programs. A major challenge associated
with using smart visualization is interoperability, or the ability
to exchange information among different software platforms. Data
schemas that would allow seamless exchange of digital information
are lacking, and redundant and missing information are common
when digital information is transferred among stakeholders from
different organizations. Creating an application that brings together
diverse types of data, including unstructured data (Wang et al.
2015; Mohr 2017), requires cooperation among governmental
agencies and private companies. Data from multiple organizations
must be shared in real time for field applications (Hissitt 2017;
Mohr 2017), and integrating diverse types of data from different
sources into a common platform while maintaining privacy and
security is a difficult task.

Facilitating data visualization for connected users at different
locations in real time is also a challenge for smart infrastructure.
Some research efforts have explored applications in construction
management (Du et al. 2018) and industrial engineering (Tolman
2018), but further research is needed in synchronization and de-
synchronization of data visualization for seamless communication.
Visualizing 3D models involves sharing a user’s viewpoint with
others, and visualization of a database must allow multiple users
to access different forms of queried data sets. Further research
in HMD and cloud computing technologies is needed to enable data
visualization applications.

Blockchain

Blockchain offers a platform for digital transactions and applica-
tions to proceed without the use of a credible intermediary party,
enabling a trustless decentralized peer-to-peer electronic cash pay-
ment network with minimal transaction cost. This new electronic
payment system is based on cryptographic proof rather than trust.
Cryptographic proof is a mathematical procedure performed by a
network of nodes running a complex hash-based algorithm, and it
provides an encrypted method of proving the chronology of trans-
actional values (Nakamoto 2008). A blockchain itself is a distrib-
uted digital ledger that is both immutable and cryptographically
verifiable. The ledger is an ever-growing data structure that is
shared among member nodes in the blockchain network. Transac-
tions on the chain are mutually agreed upon and secured by nodes
through a distributed consensus mechanism, which is the accepted
process of appending new blocks of data to the blockchain data
structure (Xu et al. 2017).

Bitcoin first implemented blockchain technology to support
trustless peer-to-peer transactions of electronic cash (Nakamoto
2008). Ethereum followed by introducing the smart contract and
decentralized application platform (Buterin 2014). To support
the Ethereum platform, the underlying technology was developed
using a built-in Turing-complete programming language to allow
developers to build and execute smart contracts using the logic
written in a few lines of code. Blockchains become more valuable
when transactions are executed using smart contracts (Szabo 1997),
which are simple scripts that perform automated algorithmic steps
using data logged by the chain. Smart contracts are useful for data-
intensive work processes, and they are necessary to innovate oper-
ations of modern infrastructure that use big data. The Ethereum
platform extends the use-case of blockchain beyond money, and
it can now be used for tailored financial instruments, ownership

of custom digital assets, identity and reputation systems, and
decentralized file storage (Buterin 2014).

The utility that blockchain provides can be enhanced when com-
bined with IoT and AI technology. AI will become necessary to
allow the identification of complex patterns of data held on the
blockchain ledger; this gives consultants, utility managers, and re-
searchers the ability to analyze large quantities of verifiable data in
near-real-time. This combination offers a transparent method for
big data analysis without person-intensive labor. A blockchain plat-
form can also be integrated with IoT systems to create a decentral-
ized marketplace of services among devices, allowing for the
automation of several electronic workflows pertinent for digitized
economies (Christidis and Devetsikiotis 2016).

Blockchain technology has been studied recently by several
research disciplines including computer science (Cachin 2016), fi-
nance (Sun et al. 2016), energy (Mengelkamp et al. 2018b), supply-
chain operations (Kshetri 2018), ecology (Sutherland et al. 2017),
and natural-resources management (Saberi et al. 2018). Blockchain
technology can provide new applications for smart infrastructure
programs, but, similar to developments in other domains, infra-
structure applications on blockchain platforms should be designed
with a view of related issues to ensure that services remain stable.
System nodes that perform the cryptographic hashing necessary to
secure the network are energy-intensive. This creates concern about
global natural resource consumption, climate change, and environ-
mental degradation (Truby 2018).

Additionally, many existing blockchain protocols struggle with
privacy, scalability, and a lack of governance (Lin and Liao 2017).
New protocols have been developed that specifically aim to address
these concerns (Howell et al. 2019; Zheng et al. 2018). Platform
security is another major issue because cybercrime is prevalent
on many of the major protocols (Lin and Liao 2017). Finally, secu-
rity issue are introduced by hackers that attempt to take complete
control of a system through procuring a majority of the network’s
hashing power, also known as a 51% attack (Yli-Huumo et al.
2016).

Civil Engineering Infrastructure Systems

This section explores applications of and opportunities for using
smart technologies for infrastructure systems. For each civil engi-
neering system or domain, literature is reviewed to explore the ap-
plications, challenges, and future opportunities for the development
of smart infrastructure programs.

Transportation

Urban transportation systems include motorways, nonmotorized
paths, rail tracks, parking facilities, airports, stations, and personal,
public, and freight vehicles, public transportation systems, and as-
sociated services. With the availability of internet connectivity and
real-time data sharing, sensor-based tools are increasingly used in
many aspects of transportation systems. Each component of this
sector (e.g., private vehicle, freight, rail, and airplane) can act as
nodes in an IoT, which makes the implementation of networking
and information-sharing technologies seamless and convenient.

The most critical issues that the transportation infrastructure
systems of an urban area suffers are traffic congestion, road safety,
vehicle emissions, fleet management, and the overall synchroniza-
tion of multimodal facilities (Mihyeon and Amekudzi 2005). The
following subsections present a discussion on how these issues are
addressed through smart infrastructure programs. The discussion is
divided among the major thrusts of transportation planning, which
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are motorways, mass transit, nonmotorized modes, integrated
modes, and land-use planning.

Applications in Motorways

Automated Control of Roadway Infrastructure. Advanced mo-
tor vehicle control features include adaptive, incident responsive,
and demand-based signal control systems, coordinated ramp meter-
ing, lane management, variable speed limit, and dynamic conges-
tion pricing schemes (Zhang et al. 2011). Actuators and sensors
enable the application of advanced features. Coordinating among
different agencies such as network maintainer, network operator, and
network manager, is crucial to reduce response times associated with
incident management (Steenbruggen et al. 2012; Haque et al. 2013).
To reduce accident risk, automated speed enforcement (ASE) has
been implemented in more than 142 communities across the US
as well as cities in Canada, Europe, Australia, and New Zealand,
using computer-vision techniques (National Transportation Safety
Board 2017). Variable speed limits are used to dynamically change
speed limits based on traffic conditions and reduce accident risk and
flow breakdown, with effective application in work zones (Lyles
et al. 2004).

Ramp metering systems use a traffic signal to regulate the flow
from arterial streets onto freeways. Ramp metering has been widely
used as a low-cost measure to reduce freeway congestion in the US
Coordinated ramp metering has been implemented in Queensland,
Australia, by using a traffic responsive strategy to synchronize the
operation of several local ramps (Papamichail et al. 2010), leading
to a noticeable economic benefit (Faulkner et al. 2014).

High-occupancy vehicle (HOV) and high-occupancy toll (HOT)
lanes, dynamic tolling systems, and autopayment parking utilize
smart technologies to improve transportation and are implemented
widely. HOV lanes provide superior mobility for high-occupancy
vehicles (US Federal Highway Administration 2016), and HOT
lanes can also be used to promote efficiency by charging a toll
for single-occupancy vehicles (Konishi and Mun 2010). Dynamic
tolling, which has been implemented in more than 40 jurisdictions
in the US (ITS International 2018), uses sensors and optimization
algorithms to change the toll price in real time. A number of vari-
ables, including current and expected traffic, are used to optimize
level of service and revenue (Samdahl and Swisher 2015). Advanced
autopayment parking facilities are enabled through smartphone-
based apps. A smart parking guidance system collects information
on available parking spots and shares it through electronic displays,
saving both time and fuel consumption in a parking facility (Haque
et al. 2013).

Smart technologies can also be used to avert negative impacts on
the transportation system due to extreme weather events and natural
disasters, such as hurricanes and flash floods. For example, the US
National Weather service currently operates a warning system that
sends emergency messages to divert road traffic away from low-
lying and coastal areas (National Weather Service 1995; Chang
and Guo 2006). Environmental variables are sensed via an intelli-
gent sensor network; big data on local snowmelt, rainfall, sea level,
and temperature are processed to identify vulnerable areas; and
warnings are automatically disseminated to a wide range of receiv-
ing systems.
Vehicle Sensors, IoT, and Automation. In-vehicle sensors act
as a communication tool when they are connected to the internet.
A GPS device installed in a vehicle can give vehicle location on
a road, lane position, speed, and acceleration in real time in a
connected environment. GPS data can provide insights about the
road (e.g., slope, lane marking, and capacity), vehicle (e.g., emis-
sion, acceleration, speed, and other engine performances), and
driver characteristics (abrupt lane changing, braking or turning

tendencies, and eco-efficient driving) (McCall and Trivedi 2006;
Ahmed et al. 2019a, b). In-vehicle sensor data can be shared with
other vehicles and the transportation infrastructure to form a con-
nected vehicle (CV) framework. CV enables the mining of micro-
scopic data and real-time data sharing. CV technology can be
divided into three categories: vehicle to infrastructure (V2I), infra-
structure to vehicle (I2V), and vehicle to vehicle (V2V) (USDOT
2019). Currently, three CV pilot projects have been implemented in
New York City, New York, the city of Tampa, Florida, and the State
of Wyoming to study the application of CV technology and asso-
ciated challenges in the context of improving safety and relieving
congestion (USDOT 2019).

Autonomous vehicle technology has also evolved dramatically
over the last decade. Autonomous vehicle technology combines
multiple sensors, including a system of cameras, short-range radio
applications (such as park assist, break assist, and automatic dis-
tance control) and a light detection and ranging (LIDAR) system,
with algorithms to analyze data. Increasing automation in driving,
such as autonomous cruise control, assisted steering, and electronic
stability control, require the coordination of several synchronized
actuators in a vehicle (Amditis et al. 2012). The combination of
vehicle automation and connectivity is expected to lead to improve-
ments in travel time, safety, and energy savings, and to increase
accessibility for the elderly and disabled population (Amditis et al.
2012).

Applications in Mass Transit
Electronic payment systems and trip information dissemination
enabled by General Transit Feed System technology have become
the norm for highly populated urban areas. For example, in Spain,
Barcelona’s public transportation agency improved transit acces-
sibility to people with impaired hearing through the use of magnetic
induction loops and portable devices and implemented an advanced
passenger information system using digital maps and Quick Re-
sponse codes (TMB 2017). This project also implemented a sensor-
based advanced driver assistance system to prevent accidents on a
pilot basis. In Singapore, some notable examples of implementing
smart technologies in mass transit are peak-hour bus lanes, bus sig-
nal priority, and information dissemination through an integrated
public transport map (Haque et al. 2013). The city of Cagliari, Italy,
improved the public transport system under the guidance of the
smart-city format promoted by the European Union (Garau et al.
2016). Since 2009, the city has implemented electronic bus stop
signs, an electronic ticket payment system, real-time information
on routes, schedules, and waiting times, and an online ticketing
system.

In a smart demand responsive system, buses and mass-transit
vehicles respond to specific requests from passengers through a
mobile phone application or an online and call-in booking system,
instead of operating on fixed routes. Such systems are ideal for sub-
urban and rural communities and for the disabled population, and
rely on sensors, IoT, and data transmission for efficient operation.
Smart demand responsive transit system pilot programs are cur-
rently operating in several areas in the US, including Florida
and North Carolina (Brake et al. 2007; Agatz et al. 2012).

Technological advancements in vehicle automation are ex-
pected to be applied not only for private transportation as de-
scribed previously, but also within the public transportation
sector. Some US cities, such as Houston, Texas, and Beverly Hills,
California, are already embarking on pilot projects for autono-
mous or driverless mass-transit fleets (Mitchell 2016; abc13
2018). In 2017, the Federal Transit Administration released a
5-year research agenda for investigating the use of autonomous
vehicles technology in buses and developed plans to fund pilot
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projects for first mile/last mile services and riders with disabilities
(Federal Transit Administration 2017).

Applications in Nonmotorized Modes
Docked and dockless bike-sharing systems constitute one of the
most innovative features of a smart city’s nonmotorized modes
of transportation. Some notable attributes of smart bike-sharing fa-
cilities are ease of access, diverse business models, smart card– or
smartphone-based payment options, and connectivity to other
modes of transportation (Midgley 2009). Velib was one of the pio-
neering bike-sharing companies established in Paris, France, in
2008. With 20,600 bikes, it achieved a ridership of 75,000 per
day. Bicing in Barcelona, Spain, is another example of a smart
bike-sharing system. With a practical electronic payment system
and low prices, this bike-sharing system has successfully replaced
a significant amount of private vehicle ridership with bicycles
(Midgley 2011).

Smart walkways are another component enabling nonmotorized
mobility for a smart city, featuring connectivity to mass transit, a
clean environment, energy-efficient lighting systems, safe crossing
facilities, and accessibility. In Singapore, elderly pedestrians enjoy
extra time to cross a street because their presence is detected by the
system through a digital card (Haque et al. 2013). Recently, PAVE-
GEN developed a technology to generate electricity from the
kinetic energy generated by pedestrians when they walk on Bird
Street in London, UK (Knowles 2018). Additionally, a ClearAir
bench developed by Airlab is installed along the street that removes
NOx and bacteria from the surrounding air (Caughill 2017).

Applications in Integrating Modes
Efficient integration across different transportation modes requires
a well-planned system with real-time data sharing across individ-
uals and infrastructure. Singapore has integrated the operation of
bus and rail services by building stations close to each other,
coordinating their operations, providing well-designed walkways
between the stations, and allowing a common ticketing system for
both modes (Luk and Olszewski 2003). The USDOT took initia-
tives to apply the concept of Integrated Corridor Management
at eight different cities in the US in 2006 (Cronin et al. 2010) by
integrating motorways, public transit, and walkways. The Select
Bus Service in New York, US-75 corridor in Dallas, Texas, and
I-15 corridor in San Diego, California, implement Integrated Corri-
dor Management (Zimmerman et al. 2012; Petrella et al. 2014).
Helsinki, Finland, tested the application of Mobility as a Service
in 2016, which allowed travelers to plan and pay for public trans-
portation, taxi, car-sharing, and bike-sharing trips (Zipper 2018).

Applications in Transportation Planning and Land Use
In the US, the state departments of transportation are required to
prepare long-range transportation plans with a minimum 20-year
forecast period and present a comprehensive vision for the entire
transportation system that will accomplish sustainability, resil-
ience, and economic development goals (Castiglione et al. 2015).
Understanding and predicting transportation demand, including
the number of people and vehicles traveling and the choice of trans-
portation mode for links in a transportation network, is at the core
of transportation planning to provide the necessary information to
evaluate alternatives and make informed decisions (Castiglione
et al. 2015).

Big data analytics are used to address high levels of uncertainty
in the transportation planning process. Travel behavior information
is collected via household or smartphone-based surveys that gather
GPS data. GPS data can solve problems associated with traditional
means of data collection; household survey data typically underre-
port stops and misreport the location and travel time of activities.

The collected information is fed to large-scale travel demand mod-
els, such as activity-based models, which utilize behavioral theories
that describe participation in activities given temporal and spatial
constraints (Castiglione et al. 2015). Activity-based models are
typically developed for a single urban area and require distributed
computing across multiple processors for big data analytics. Despite
the accuracy of these models, local agencies find their implementa-
tion challenging due to computational requirements. A state-of-the-
art activity-based model is operated by the San Francisco County
Transportation Authority in California and uses Google’s anony-
mized trip data (Sana et al. 2017) and pedestrian environmental fac-
tors in walking and transit trips (Bomberg et al. 2013).

Land-use changes due to transportation interventions constitute
an important component of the transportation planning process and
are estimated using microsimulation or agent-based land-use mod-
els. The capabilities of such models can differ substantially and
may represent disaggregate households, individuals, or firms and
include complex economic interactions (Castiglione et al. 2015).
Looking forward, there is a need to integrate travel demand and
land-use models to better account for the recursive relationship be-
tween transportation and land use.

Opportunities and Challenges
A smart transportation system largely depends on reliable and
robust data collection, analysis, and dissemination frameworks.
Further opportunities for obtaining transportation data are available
through sensors and the IoT that monitor aggregate and individual
travel behavior. For example, Bluetooth sensors, social media, and
GPS devices have been used for traffic monitoring, incident detec-
tion, bottleneck identification, and travel behavior analysis (Gu
et al. 2016; Nikolaidou and Papaioannou 2018; Hasnat and Hasan
2018; Tanvir et al. 2017). These data collection efforts should be
better coordinated at the local, regional, and national levels to lead
to wider societal benefits. In addition, the collection of big trans-
portation data by public agencies is typically disconnected from the
resources needed for analysis and dissemination. Agencies need to
invest in processing units, software, and human capital that will
enable big data analytics, AI, and advanced visualization.

Although many advances in the transportation sector are
practice-ready, several aspects of these improvements require fur-
ther attention. For instance, the operation of a larger fleet of electric
vehicles will be accompanied by several policy and planning-level
challenges, such as developing adequate infrastructure for vehicle
charging; choosing the optimal location of charging stations; mov-
ing away from traditional mechanisms for funding infrastructure
(such as the gas tax); and using smart technologies to impose
charges equitably and on the basis of infrastructure use.

Full-fledged operation of autonomous vehicles on the road re-
quires further research to resolve critical issues. First, appropriate
policies and regulations need to be developed for the safe operation
of these vehicles related to eligible zones for operation, driver eli-
gibility, and liability in case of an accident. Second, public agencies
need to work with private companies and community-based organ-
izations to introduce shared and personal autonomous vehicle tech-
nology within population groups that currently do not have the
ability to operate a vehicle, such as the elderly and those without
driver’s licenses.

Third, additional research is needed to evaluate the positive and
negative externalities of automation. Vehicle automation will affect
vehicle ownership, transportation mode choice, traffic congestion,
emissions, and land uses. The emergence of shared, peer-to-peer,
and on-demand transportation services is expected to reduce auto-
mobile use, cover the unmet needs of various populations, and
achieve higher connectivity across modes (Docherty et al. 2018;
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Thakuriah et al. 2017; Fagnant and Kockelman 2015). Thoughtful
government intervention will be necessary, however, for the smart
mobility transition to occur in an ethically acceptable way, ensuring
that access to transportation services is provided for all and that the
quality of life is improved for mobility-challenged groups. Systems
should be designed to avoid digital discrimination, which has al-
ready been documented for other shared services (Edelman et al.
2017). Digital discrimination could occur in smart mobility serv-
ices through, for example, discriminatory AI algorithms that result
in limited access to shared services on the basis of race or location
(Docherty et al. 2018).

Water Systems

In an urban environment, water services provide drinking water;
dispose of and manage wastewater, which includes sewage and
stormwater; and manage large-scale water resources to provide
and sustain supply and avoid floods. The condition of the US drink-
ing water, wastewater, and stormwater infrastructure is deteriorat-
ing and broadly in need of repair. Most of the drinking water
infrastructure is approaching the end of its useful life within the
next 30 years (ASCE 2017a). Deteriorating drinking water infra-
structure is subject to leaks, creating vulnerabilities to contaminant
intrusion and threatening public health (Vacs Renwick et al. 2019).
Stormwater systems are underdesigned to carry peak flows that
have increased due to both dense urban development and climate
change, which increases the frequency of extreme events and high
flows (Lopez-Cantu and Samaras 2018). Wastewater systems are
similarly underdesigned to deal with high loads from urban waste
(ASCE 2017a), and so-called fatburgs have emerged as large clogs
due to the deposition of fat, oils, and greases in interceptors (Oakes
2019; He et al. 2011).

Applications in Water Resources Management

Sensors and IoT. Online water quality monitoring measures
physicochemical parameters in water bodies in real time to deter-
mine water quality status in real time, provide early warnings, and
improve security of water bodies (Dong et al. 2015). Li et al.
(2017b) developed an IoT platform to collect water quality data,
process and analyze it in real time both in situ and at remote stations
using bidirectional wireless communication between mobile sensor
nodes and analysis stations.
Crowdsourcing and Citizen Science. Crowdsourced and citizen
science data can provide new information spanning large geo-
graphic areas about water resources. Public web images of moun-
tainous regions have been leveraged to create virtual snow indices
that inform water management operations (Giuliani et al. 2016). A
short message service (SMS) text-messaging protocol was de-
ployed in Wisconsin for acquiring local stream level data from citi-
zen scientists (Fienen and Lowry 2012). The IoT was used to
integrate existing and new water-level sensor data based on ultra-
sonic and radar remote-sensing technologies, and crowdsourced
flooding observations were used to validate sensed data and a
hydrologic model (Loftis et al. 2018). Data from social media posts
were used in real-time modeling frameworks to identify areas likely
to have flooded and the extent of inundation (Fohringer et al. 2015;
Smith et al. 2017).
Actuators. A paradigm for actively controlling urban catchments
has been developed based on the use of smart and connected sen-
sors and valves. Storage and release were optimized for a set of
rainwater harvesting tanks to reduce peak flows from two residen-
tial lots (Di Matteo et al. 2019). A set of studies demonstrated that
valve-actuators can be used to dynamically adjust water levels dur-
ing storm events to alleviate flooding and improve water quality

across regional watersheds (Mullapudi et al. 2017, 2018; Wong
and Kerkez 2018).

Applications in Pipe Networks

Sensors and IoT. Municipalities and utilities have deployed smart
water meters, or advanced metering infrastructure (AMI) to mon-
itor parameters in drinking water pipe networks, providing new
data about account-level demands and system-level performance
at hourly or subhourly frequencies (Savic et al. 2014; March
et al. 2017). Smart meters are typically referred to as the meters
that automatically record and transmit data about household con-
sumption in near-real-time. One immediate use of AMI data is
rapid identification of leaks, leading to lower water bills, less
wasted water, and less nonrevenue water. Smart meter data have
been used for identifying postmeter leaks and communicating
unusual water consumption to consumers (Giurco et al. 2010;
Sønderlund et al. 2016; Nguyen et al. 2018; Farah and Shahrour
2018). New models have been developed to scale up household-
level water consumption data to also detect leaks in main pipes
(Luciani et al. 2018). Online sensors can be placed in a water dis-
tribution network and used in smart infrastructure applications to
detect leaks through advanced analysis of pressure and water
quality data (e.g., Mutikanga et al. 2013; Sadeghioon et al. 2014;
Berglund et al. 2017), and distributed computing technologies have
been developed to efficiently process this data for locating leakages
(Lay-Ekuakille et al. 2017).

There are a number of additional applications for AMI data.
Smart meter data are used to develop near-real-time water distribu-
tion system models (Arandia-Perez et al. 2014; Gurung et al. 2016),
enhanced hydraulic and water quality models (Gurung et al. 2014),
descriptive water demand models (Cardell-Oliver 2013; Nguyen
et al. 2014; Beal and Stewart 2014; Gurung et al. 2015; Cardell-
Oliver et al. 2016; Cominola et al. 2018b), and forecasting models
for system-level consumption (Herrera et al. 2010; Romano and
Kapelan 2014; Chen and Boccelli 2018) and account-level con-
sumption (Aksela and Aksela 2011; Candelieri 2017; Pesantez
et al. 2020). Analysis of smart meter data has been applied to sup-
port the development of water demand management policies
(Cominola et al. 2015; Monks et al. 2019). Smart metering demand
management programs have been developed in regions suffering
from prolonged droughts to achieve quantifiable water conserva-
tion targets through feedback about water consumption behaviors
(Rizzoli et al. 2014; Willis et al. 2010).
Actuators. Actuators can be used in drinking water distribution
networks to automatically respond to sensed parameters. WaterBox
is a sensor and actuator system that can close pipes through valve
manipulation in response to changes in water pressures or remote
commands (Kartakis et al. 2015), and methods for placing a sub-
network of automated shut-off valves was demonstrated to strategi-
cally contain contamination plumes during chemical spills or
deliberate attacks (Palleti et al. 2018). Variable speed pumps can be
deployed for real-time pressure management of water distribution
systems (Page et al. 2019).

Opportunities and Challenges
The advent of smart metering for water systems provides valuable
information and introduces new challenges in water management.
AMI records real-time consumption at the account level at sub-
hourly increments, whereas, historically, water managers and users
knew only monthly consumption volumes based on billing cycles.
Beyond rapid identification of leaks, further uses of these data are
currently being explored. Big water data are subject to a high degree
of noise and variability due to factors including different end uses,
seasonality, and socioeconomic conditions (Boyle et al. 2013), and
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current research is exploring how to effectively use these data. Some
studies focused on collection of these data at very fine scales, such as
5- or 15-s cycles to decipher end uses (Gurung et al. 2014). However,
utilities cannot afford the energy costs of storing and sending these
data and instead collect smart data at hourly or subhourly data cycles
(Cominola et al. 2018a). Research should establish the sensing fre-
quency that is required for different management tasks.

Research is also needed to develop tools that use AMI data to
forecast peak flows of pipes, forecast demands, and plan adaptive
operations. Because new data about individual water use behaviors
are available, new demand management programs can be explored,
simulated, and designed. Dynamic pricing and serious games are
emerging management tools that can protect water resources and
infrastructure. Studies should demonstrate the extent of savings
in water resources and infrastructure investment for utilities that
use AMI, big data analytics, advanced simulation, and adaptive de-
mand management.

For some environmental parameters, such as microbes and other
biological indicators, real-time sensing is not feasible. Engineers
can play a major role in assessing the value of new technologies
and new data by demonstrating through simulation, for example,
how real-time data could be used to improve the level of service
provided by infrastructure systems. Simulation studies can explore
the value of collecting information at fine time scales and identify
the frequency of data collection needed to optimize gains in infra-
structure management.

The use of smart city technologies introduces vulnerabilities
in privacy and security for a community. The use of smart meter
data for decision making and feedback about water consumption
should be planned with careful attention to what level of personal
information about water use is accessible to different stakeholders
(Giurco et al. 2010). As the use of smart and connected technol-
ogies increases for water network components, water distribu-
tion systems can become increasingly vulnerable to cyberattacks
(Rasekh et al. 2016; Taormina et al. 2017). Perpetrators may gain
access to the cyber-physical network to control or disrupt opera-
tions (Janke et al. 2014). A notable example occurred in the
Maroochy Shire in Queensland, Australia. Through a cyber attack
on a supervisory control and data acquisition (SCADA) system,
sewage valves were opened to release sewage into a park and
drainage ditch (Brenner 2013).

IoT networks have the potential to improve the efficiency of man-
aging sewer systems through early warning systems that predict fat,
oil, and grease buildup in wastewater networks and combined sewer
overflows in stormwater networks. Sensor placement within water
networks is a challenge because most of the infrastructure is under-
ground, creating problems in installing, maintaining, and transmit-
ting data from sensors. The operation and maintenance costs of
sensor selection and placement, communication technology, and
power source affect design decisions for smart systems, which can
limit the quality of data and constrain the scope of initiatives.

Solid Waste Management

Solid waste management is a critical activity in the urban environ-
ment due to the costs associated with collecting and disposing of
solid waste; the potential for material, nutrient, and energy recov-
ery; and the emissions and nuisances caused by waste processing
systems. Over the last decade, there has been a significant push to
incorporate smart systems to improve the environmental and eco-
nomic performance of solid waste management systems.

Applications
IoT-enabled waste management systems have been developed for
data acquisition through sensors, communication technologies and

data transmission, testing IoT systems in the field, and truck routing
and scheduling for waste collection (Arebey et al. 2011; Esmaeilian
et al. 2018). Waste collection has been a primary focus area because
it typically represents 50%–84% of total waste management costs
(Nguyen and Wilson 2010; Teixeira et al. 2014; Jaunich et al.
2019).

Weight- or volume-based (e.g., ultrasonic or optical) sensors are
used to estimate the volume of waste in commercial dumpsters to
more effectively plan waste collection timing and routing (Vicentini
et al. 2009; Rada et al. 2013; Lata and Singh 2016). Camera-based
systems can estimate the volume of waste disposed and monitor
contamination in the bin (Zvagelsky 2019). These data can be used
to enforce contamination restrictions and identify critical areas for
additional education and outreach. Bin weight or volume sensors
can be combined with crowd-sourced data on the location and types
of litter reported using smartphone apps (e.g., such as that by Lit-
terati, to prioritize areas for additional bins and monitoring. Com-
bining bin sensors with real-time traffic data has also been used to
optimize collection vehicle routing (Anagnostopoulos et al. 2015).

RFID tags on residential bins are used to determine how fre-
quently each resident puts out different types of bins (e.g., what
fraction of residents put out a recycling bin each week). This data
can used to implement pay-as-you-throw (PAYT) systems that
charge residents per bin dumped instead of a flat fee (Chowdhury
and Chowdhury 2007). The PAYT rate can be refined using weight
sensors on the collection vehicles, which encourages residents to
reduce their waste generation. Typically, different rates are charged
for residual versus recyclable bins, but monitoring and enforcement
is required to avoid perverse incentives to add residual waste to the
recyclable stream.

Opportunities and Challenges
The use of smart infrastructure in solid waste management sys-
tems has the potential to improve efforts to move toward a more
circular economy. The use of smart sensors and communication
technologies can reduce litter in the environment, increase recy-
clable recovery and purity, and reduce costs and emissions asso-
ciated with material collection and recovery. These developments
are essential for providing more sustainable management of solid
waste resources.

A major opportunity for smart technologies in solid waste man-
agement systems is the reduction of contamination in separated
recyclable or organics streams. In 2018, China restricted the types
of recovered materials and the allowable level of contamination that
would be accepted (Corkery 2019). In response, many US cities
have increased their waste management costs, eliminated specific
materials (e.g., glass) from their recycling programs, or eliminated
curbside recycling altogether (Semuels 2019; Corkery 2019). Sen-
sors that can effectively check for contamination could alleviate
these issues. Proposed systems that use RFID tags to identify indi-
vidual recyclable components in a waste stream can also aid this
effort (Glouche et al. 2015). Knowing what is in a load of waste
before it is accepted or disposed can help ensure that materials are
handled sustainably.

Solid waste managers and policymakers have been increasingly
interested in using life cycle assessment to develop and evaluate
sustainable solid waste management strategies (Allen et al. 2009;
Joint Research Center European Commission 2009; Palmeri 2010),
and real-time data from smart systems (e.g., waste composition,
waste generation, and traffic conditions) can improve the effective-
ness of these strategies. For example, in 2018, the city of Philadel-
phia, Pennsylvania, began incinerating approximately half of their
recyclables to produce electricity instead of recycling them due
contamination and a lack of markets (Murrel 2019). In the future,
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engineers could use smart waste management systems to determine
which loads should be incinerated based on material properties
(e.g., moisture content or paper content), transportation times/
distances, currently available facility capacity, and market demand.
These integrated systems can ensure that materials are cost-
effectively recovered to their highest available use at a given time.
The development and deployment of smart waste management
systems should be informed by dynamic life cycle modeling and
simulation of the potential costs and environmental trade-offs
to help improve sustainability and avoid unintended negative
consequences.

Concerns about data privacy and security may impede the im-
plementation of smart waste management services because munici-
palities may be able to gain access to household data through IoT
applications. Finally, the development of smart waste management
as the fusion of resource recovery, electronic systems, and smart
infrastructure may create rebound effects and uncertainty in con-
sumer behaviors, and these dynamics should be considered care-
fully when developing and implementing smart waste systems and
sustainable waste management strategies.

Air Quality

Air pollution control and air quality monitoring are critical in man-
aging environmental resources for urban areas and ensuring public
safety from exposure to air pollutants. Expertise in air quality mod-
eling, contaminant detection, and exposure analysis is needed to
manage air quality. Air quality modeling is a major challenge
for urban areas because of limitations in the acquisition of air qual-
ity data. Monitoring is needed at areas with high pollutant loads that
affect public health, and stations may not be sited to collect critical
data (USEPA 2017). Pollutant concentrations vary significantly
both spatially and temporally, and using data collected by a small
set of fixed-point sensors limits the accuracy of concentration mod-
els. New techniques are needed to implement data collection sys-
tems that provide details fine enough in granularity to inform
pollutant concentration models.

Applications
Smart city technologies and techniques have improved urban air
quality data collection. These advances have aided in the construc-
tion of real-time mapping algorithms for monitoring pollutant con-
centrations through vehicular mobile sensing and personal sensing
devices (Brenning and Dubois 2008; Devarakonda et al. 2013). The
city of Zurich in Switzerland implemented a mobile air quality data
collection platform using its public transit system to produce high-
resolution air pollution maps across the city (Hasenfratz et al.
2015).

Opportunities and Challenges
Real-time mapping of air pollutant concentrations can bring health
benefits to at-risk members of society, such as children and the eld-
erly. Improved mapping capabilities can also assist engineers in
determining appropriate strategies to mitigate future pollution con-
cerns. Mobile sensing using public transportation infrastructure can
provide continuous measurements of air quality data in highly trav-
eled areas (Hasenfratz et al. 2015). Integrating air quality monitor-
ing systems with IoT architecture can enable crowdsourced air
quality data, leading to real-time concentration mapping over an
extensive area (Alvear et al. 2018; Devarakonda et al. 2013). For
air quality sensors to function in an IoT context, however, they must
meet low size and power requirements, include proper communi-
cation interfaces, and have sufficient battery capacity. Recent tests
of air quality sensor designs revealed that hardware solutions do not
adequately meet these conditions (Alvear et al. 2018). In addition,

low-cost sensors have calibration requirements that are difficult to
enforce in crowdsourced programs (Penza et al. 2017).

To accelerate the development of low-cost sensor technology,
researchers need access to air quality reference stations to collocate
new sensor designs alongside existing sensors and test performance
for long-term data collection (Castell et al. 2017). Integrating data
collected at reference stations and low-cost distributed sensors can
improve the spatial and temporal resolution of data sets (Penza et al.
2017). Engineers must work with system developers to adopt stan-
dards for data formats and quality from low-cost sensors (Clements
et al. 2017). New methods are needed to interpret sensor readings
from instruments that provide data at shorter time intervals but do
not meet standards used for federal regulations such as the National
Ambient Air Quality Standards (NAAQS) (Woodall et al. 2017).
Air quality data analysts should become familiar with data sets that
are both irregular and sparse; protocols are needed to clean and
analyze diverse data sets and communicate insights to citizens
(Woodall et al. 2017). Finally, crowdsourcing is a promising ap-
proach for air quality monitoring, but high participation is neces-
sary to properly inform real-time mapping algorithms. Platforms
are needed that incentivize citizens to collect air quality data and
prioritize the timing and location of data collection (Devarakonda
et al. 2013; English et al. 2018).

Energy Infrastructure

Energy infrastructure in urban areas must satisfy heterogeneous en-
ergy demands for a community of users and consumers. Utilities
are typically challenged with managing a daily peak load, which
requires the use of stand-by fossil fuel–fired generators that are,
in general, expensive and inefficient. Demand-response programs
can reduce the operation of expensive tertiary generators by encour-
aging customers to reschedule their power consumption to shave
peak loads (Deng et al. 2015). Demand-side management practices
that can be enabled through smart technologies and smart infra-
structure include green tariffs, dynamic pricing, incentive- and
price-based programs, smart appliances, and home-area networks
that optimize and automate electricity consumption (Kowalska-
Pyzalska 2018). Utilities can use forecasting techniques to predict
peak loads, develop demand-response programs, minimize gener-
ation cost, and plan efficient operations (Khan et al. 2016).

Distributed energy technology diffusion also presents a challenge
for managing urban energy infrastructure. Adoption of decentralized
renewable energy resources, such as solar photovoltaic (PV) cells,
and their integration within an urban power grid has caused opera-
tional issues for power systems. Renewables are unpredictable and
intermittent and can cause failure of distribution equipment and roll-
ing blackouts. Civil engineers should guide the transition of the
modern electric grid from a centralized fossil-fuel powered system
to a distributed and renewable smart grid. Civil engineers must
understand the drivers of eco-diffusions and develop new approaches
to adapt power systems accordingly; these efforts will ensure grid
reliability and achieve the smart grid paradigm.

Applications

Sensors. AMI, such as smart home energy meters and distribution-
level network sensors, are nearly ubiquitous among urban energy
providers (Zhou et al. 2016). AMI is used in critical peak pricing
tariffs, with dynamic pricing based on the timing of energy con-
sumption. Sacramento Municipal Utility District, Pepco, and
Pacific Gas & Electric Company have implemented critical peak
pricing tariffs (Herter and Wayland 2010; Wang et al. 2011). These
programs shift commercial and residential loads to flatten the
demand curve.
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Big Data Analytics. Through AMI, the smart grid generates a
large amount of data from various sources, including consumer
power use, phasor measurement, and distribution level data. Data
collected at smart energy sensors can aid in making decisions for
future generation capacity (Hashem et al. 2016). Big data and ma-
chine learning techniques have been integrated in sensor-based
consumption forecasting models (Jain et al. 2014) to develop
demand-side management strategies.
Automated Control. Smart thermostat programs allow end-users
to give utility managers control over their air-conditioning units to
shave peak demand using higher temperature set-points in the
summer time. Smart thermostat programs have been implemented,
for example, by Austin Energy, Kansas City Power & Light, Long
Island Power Authority, Sacramento Municipal Utility District, and
Pacific Gas & Electric Company (Goldman et al. 2010; Wang et al.
2011; Sullivan et al. 2013).
Blockchain. A new system of peer-to-peer electricity trading
among end users can emerge with increasing microgeneration
(Mengelkamp et al. 2018a). Developments in blockchain and smart
contract technology have created a new concept of decentralized
peer-to-peer electricity trading platforms (Dawood et al. 2018),
and the concept was tested in Western Australia (Hansen et al.
2020). Residential households exchanged excess solar power and
set their own prices in the market through a Power Ledger platform,
which implements trading using smart contracts and blockchain as
an accounting layer (Power Ledger 2018). Household-level energy
sensor readings were used to inform electricity trades and confirm
exchanges. The blockchain platform has also been implemented
in Wyomissing, Pennsylvania, to allow commercial agents to ex-
change excess solar power within a business park (Trowbridge
2018).

Opportunities and Challenges
The use of smart technologies has resulted in many new benefits for
energy systems and enabled novel revenue streams for traditional
civil infrastructure programs. Further research is needed to explore
demand response programs. New financial incentives can be ex-
plored to reduce peak demands and allow higher penetration of re-
newable energy sources into the grid (De Jonghe et al. 2012).
Incorporating demand response measures into civil infrastructure
management can result in systemwide cost and energy savings
for electric distribution systems and other infrastructure systems
(Siano 2014; Oikonomou et al. 2018). Water treatment systems
may be automated to reduce energy demands during periods of
peak energy and energy grid emergencies (Oikonomou et al. 2018;
Menke et al. 2016). Pump scheduling and water storage facilities
can be used to generate energy at a profit, and civil engineers can
develop methods to optimize these services while meeting service
and hydraulic constraints (Menke et al. 2016).

Coordinated energy management can also be developed in
mixed-use buildings to control indoor air temperature, ensure
server provisioning and load balancing in data centers, and allocate
usage of backup diesel generators. Solutions for coordinated energy
management must consider effects on human discomfort, degrada-
tion of building application performance, and increased emissions
(Tran et al. 2015).

Peer-to-peer energy trading offers an alternative business model
to electric power distribution that may bring new value to excess
solar generation and support a more agile electricity market.
Real-time signals of market prices and feedback about energy con-
sumption may influence participants to shift their energy-intensive
activities to periods of the day with low electricity prices or reduce
consumption altogether (Albadi and El-Saadany 2008; Hargreaves
et al. 2013). Adaptive behaviors and heterogeneous decision

making may have significant impacts on the performance of decen-
tralized electricity systems. Civil engineers must assess the trajec-
tory of these adaptations and develop methods for managing their
impacts to energy infrastructure. Digital innovations that enable
peer-to-peer energy trading may also increase the complexity of
governance systems that regulate and operate energy infrastruc-
ture. Conceptual and analytical tools must be explored to study
how consumers’ online interactions with energy infrastructure in-
fluence the effectiveness of shared energy governance systems
(Hansen et al. 2020). Modeling tools can be used to simulate al-
ternative energy policies and the adaptive behaviors of market
participants that may emerge to determine the impact to distribu-
tion system operations (Lopes 2018; Corbet et al. 2018; Pinto
et al. 2014).

Construction Engineering and Management

Construction engineering and management (CEM) is a service that
uses project management practices to manage the planning, design,
construction, and maintenance of building and construction proj-
ects. The purpose of CEM is to meet the triple constraint (i.e., time,
cost, and quality) of a project while maintaining safety. CEM uti-
lizes different technologies to improve productivity, communica-
tion, track performance, and decision-making processes.

CEM is part of the architecture, engineering, and construction
(AEC) industry, which is one of the biggest industries, with expendi-
ture reaching over USD 1.2 trillion in 2017 (Statista 2017); however,
AEC is one of the least efficient industries (Asadi et al. 2019a). More
than 98% of projects face either cost overruns or schedule delays due
to construction reworks (Changali et al. 2015; Forcada et al. 2017).
In addition, the AEC industry faces dynamic problems, such as in-
efficient project scheduling and project resource management. These
inefficiencies lead to a high level of uncertainty, challenging industry
leaders in predicting and increasing productivity (Asadi and Han
2018).

Applications
RFID is a widely used sensor in the AEC industry and has been
used, for example, to manage labor, machinery, and materials in
construction projects (Lu et al. 2011). RFID and IoTwere used with
building information modeling (BIM) to trace and manage prefab-
rication processes in different stages of modular construction, such
as production, logistics, and onsite assembly (Zhong et al. 2017).
RFID and BIM were also applied to mitigate risks and improve
schedule performance in prefabricated construction (Li et al.
2017a; Sherafat et al. 2019a). This application significantly reduced
rework and improved the productivity and communication among
stakeholders. However, the lack of knowledge among construction
workers limited adoption. RFID and IoT were applied to improve
utilization of lean construction practices in the AEC industry and
reduce management costs, work-in-progress (WIP) inventory, and
lead time (Xu et al. 2018). IOTand BIM were integrated to improve
information flow in a construction project (Dave et al. 2016) and
control steel bridge maintenance activities (Ding et al. 2018).

A WSN was developed to detect worker fall accidents (Cheng
et al. 2016), and an automated system was developed to track visual
search behavior of construction workers using wearable eye-
tracking sensors for personalized safety monitoring and training
(Jeelani et al. 2018). Cheng et al. (2017) developed a system to
plan optimal evacuation routes through a system that integrates
Bluetooth-based sensors, a mobile application, and BIM during
fire accidents. Jebelli et al. (2018) utilized physiological sensors
to recognize workers’ stress and applied data analytics methods to
accurately identify stress levels.
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Opportunities and Challenges
Construction engineering is a field that can adopt modern technol-
ogies to improve productivity and safety because it involves work-
ers, managers, materials, and equipment. Potential applications
include wearable sensing, remote operation, supply replenishment,
construction equipment tracking, repair and service, and progress
monitoring. The adoption of smart technologies for construction
applications has been limited to using smart connected sensors
and BIM for building management (Pasini et al. 2016).

On the other hand, researchers have studied smart technologies
for active construction accident prevention systems (Teizer et al.
2010), tracking prefabricated construction modules (Zhong et al.
2017), automated construction monitoring (Asadi et al. 2018;
Sherafat et al. 2019b), and improving productivity using image-
based sensors (Asadi et al. 2019b, c). Furthermore, there are many
opportunities for increasing the degree of automation in construc-
tion using sensors, IoT, and data analytics. Bilal et al. (2016) pro-
posed big data opportunities, such as optimizing construction
resources, using big data for smart buildings, and incorporating
the use of big data within BIM. They investigated existing and
emerging strategies for BIM and big visual data in construction
performance monitoring to characterize gaps in visual sensing and
analytics applications.

Utilizing new technologies can create new opportunities for the
AEC industry. Major challenges of bringing these research efforts
into practice include processing and managing big data (especially
visual data) and the associated processing time. For instance, out-
fitting workers with wearable sensing technologies creates the need
to transfer, synchronize, and process data from hundreds of workers
for many hours per day. Visual sensing can generate gigabytes of
data in a very short time period (Han and Golparvar-Fard 2017).
Cloud computing can be a viable solution for big data processing
challenges (Hashem et al. 2015). Services such as Amazon Web
Services (AWS) and Microsoft Azure offer potential solutions
for big data processing using cloud computing. However, these
services require significant improvement in terms of processing
power to analyze big data that may be generated by construction
applications (Kotas et al. 2018).

Turk and Klinc (2017) showed that blockchain technology has
the necessary potential to solve BIM problems such as recordkeep-
ing and confidentiality, and Wang et al. (2017) showed that block-
chain has the potential to improve construction supply chains
trenchancy and manage contracts. Blockchain technology is new,
and the AEC industry requires both organizational and technical
development to adopt this technology. Demonstrations of the prac-
tical implementation of these technologies at construction sites
can increase the adoption of smart technologies across the AEC
industry.

Geotechnical Systems

Geotechnical engineering focuses on soil improvement to secure
the stability of foundations and earthen systems through strength-
ening and stiffening loose soil via compaction, consolidation, and
cementation. Geotechnical systems provide foundational support
for superstructures as a part of urban infrastructure. The theories
of soil mechanics and rock mechanics are applied to understand
and predict the behavior of earth materials in the subsurface within
engineering design. Geomaterials are generally heterogeneous and
anisotropic, with inconsistent stress behaviors (elastoplastic). Geo-
materials are also susceptible to environmental effects and subject
to disturbance. In the design process, geotechnical systems tend to
use a high factor of safety (e.g., 3) to address uncertainties in the

performance of geomaterials that result from insufficient and dis-
crete reconnaissance (Holtz et al. 1981).

Applications
One geotechnical application that actively uses real-time sensing
technology is slope monitoring, which uses a tensiometer, piezom-
eter, rain gauge, and acoustic emission sensor to trace the movement
of the slope. This system enables to detect the onset of rapid land-
slides induced by intense precipitation and earthquakes (Zan et al.
2002; Dixon et al. 2015). In the quality control of asphalt pavement
compaction, geomaterial sensors are used to correlate the rolling re-
sponse to the degree of compaction (Yiqiu et al. 2014). Widespread
application for monitoring geosystems is limited due to battery life-
time, sensor maintenance, difficulties of installation of sensors, and
the required interval and frequency of monitoring.

Ground-penetrating radar (GPR) is a geophysical technology
that determines the subsurface profile (e.g., geometric fracture zone
and layers) and material properties, such as hydraulic and electric
characteristics of soils, using geophysical waves (Grasmueck et al.
2005; Lambot et al. 2006). Although the accuracy of the geophysi-
cal approach is lower than a conventional physical profiling system
(e.g., boring and sampling), GPR provides quick assessment and
extensive coverage of the target area.

Opportunities and Challenges
The use of advanced technology in geotechnical systems has been
limited because the extensiveness and uncertainty of soils creates
difficulties in predicting behaviors (Basu et al. 2015). Overcoming
these issues is a key factor in improving the penetration of smart
technologies in geotechnical systems. One technology that has
emerged to address some of these issue is fiber optic sensors
(FOS). A FOS uses an optical fiber for remote sensing of extensive
infrastructure systems, such as dikes, dams, tracks, and highways
(Habel and Krebber 2011). Kechavarzi et al. (2016) demonstrate
the potential of using FOS in geotechnical systems for distributed
strain, temperature, and acoustic sensing, enabling spatiotemporal
monitoring of geomaterials in situ.

Geotechnical engineering smart systems should be an integrated
part of the smart city, yet geotechnical engineering has remained
at the fringe of smart city applications. For example, a geotechnical
innovation that supports sustainable development is the energy
pile, which is a foundation system exploiting subsurface geo-
thermodynamic energy (Bourne-Webb et al. 2009). Brandl (2006)
utilized heat at shallow depths through foundation systems to gen-
erate electricity for building-scale purposes. Potential challenges
associated with geothermal energy are long-term effects on the
foundation system due to heat fluxes.

The application of smart technologies in geotechnical engineer-
ing can enhance the development of eco-friendly geomaterials.
Portland cement is a synthetic cement and is the most prevalent
bonding material used in civil engineering foundations and struc-
tures due to its economic advantage and availability. Portland
cement, however, emits high levels of CO2, to wit, 8% of global
CO2 emissions are attributed to cement (Lehne and Preston 2018).
Sustainable cementation agents, such as biomineralization, bio-
polymers, and recycled materials, can replace portland cement
(Dejong et al. 2010; Soleimanbeigi and Edil 2015; Chang et al.
2016). Further research is needed to incorporate real-time sensing
technology and control to address challenges associated with cost,
field implementation, uncertainties and heterogeneity of materials,
and long-term performance.

Many new technologies remain at laboratory scale because they
are perceived as impractical compared with conventional and
existing technologies. Efforts are needed to utilize and validate
those technologies for field implementation and at building-scale
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and city-scale sites. Coordinated efforts among researchers and
regulatory bodies are needed to facilitate the commercialization
of new technologies and increase the benefits of smart technologies
applied for geotechnical systems.

Structures

In an urban environment, structural engineering involves the safe
and reliable design of the built infrastructure to withstand the physi-
cal demands that the infrastructure may experience during its de-
sign life. The loads and physical demands that these structures
experience include the effects of gravity, live loads from occupancy
or material loading, pedestrian traffic, vehicular traffic, snow loads,
wind loads, hydrostatic loads, hydrodynamic loads, seismic de-
mands, thermal effects, shrinkage effects, deterioration, and con-
struction loads. Structures may be constructed from a variety of
materials including wood, masonry, unreinforced concrete, rein-
forced concrete, prestressed concrete, steel, carbon composites, and
plastics (ASCE 2017b; AASHTO 2017; ICC 2018).

Applications

Sensors. Sensors have been used as a part of structural health
monitoring for many years. The use of sensors in structures have
included strain gauges, accelerometers, inclinometers, anemome-
ters, pressure transducers, fiber optic sensors, thermometers, crack-
width monitors, and other displacement transducers (Ansari 2005;
Lynch et al. 2006; Chowdhry et al. 2007; Kijewski-Correa et al.
2013; Matarazzo et al. 2017). Strain gauges, for example, can be
used on structural steel surfaces to monitor changes in the way that
stresses are distributed within a structure, and particularly when
subjected to large loads. Similarly, in large cable bridges, the con-
struction process can require careful adjustment of tension in the
cables and, therefore, careful monitoring of the strains is required.
Accelerometers can be used to monitor the acceleration of different
parts of the structure and assist in determining the natural frequency
of structures. If monitored progressively, changes in natural fre-
quency can identify deterioration or the need for intervention
(Lynch et al. 2006; Lynch and Loh 2006; Gavina et al. 2017).
Although many examples of sensor use can be identified, the data
from these sensors are often difficult to interpret and therefore not
typically used in automation. It is also uncommon for sensors to be
used in a coordinated manner across large inventories of structures.
Actuators. In structural engineering, the term actuator specifically
refers to a sensor controlled and driven piston that is used to induce
forces or displacements. For instance, servohydraulic actuators can
be used in structural testing. For consistency with this paper, the
term actuator will be used as is described in the “Enabling Tech-
nologies for Smart Infrastructure” section. In the context of struc-
tural engineering, actuators may be referred to as active systems,
and they are not commonly used except in specialized applications.

Actuators are commonly used in air-supported structures, such
as those used for supporting domes. These structures have pressure
transducers and pumps that regulate the pressure difference needed
to ensure the structure remains supported. Depending on the size
and importance of the structure, different complexities of control
systems are used. ASCE 17-96 guidelines on air-supported struc-
tures outlines some general requirements on the design of such
structures, including the level of automation and redundancy re-
quired in their control (ASCE 1997).

Tuned mass dampers are large movable masses or pendulums
(approximately 1%–2% of the building mass) that are used in struc-
tures to reduce the effects of vibrations from wind loads and, in
some cases, earthquake loading. These systems, however, are not
active actuator systems. Active mass dampers fall in the definition

of sensor and actuator systems. Active mass dampers can use a
measured signal and a servocontrolled actuator to move a mass
such that it counteracts the effects of the detrimental vibrations in-
duced on the structure (Austin 2017; Nishimura 1992; Iba et al.
2017). Active mass dampers have been used in high-rise structures
in the US and Japan to mitigate the effects of wind or possible seis-
mic demands (Spencer and Sain 1997).

Other active sensor–actuator systems have been used or pro-
posed, including active variable stressing of tendons, variable angle
foils to induce aerodynamic forces on structures, and isolation us-
ing electromagnetics (Spencer and Sain 1997; Soong and Spencer
2000; Marzbanrad et al. 2004; Reynolds and Christenson 2006;
Soong andManolis 2008; Del Grosso 2009; Nitzsche 2013; Kerboua
et al. 2014; Amezquita-Sanchez et al. 2014; Smith 2017a; Charon
2017; Katebi 1993; Yoshida 1992; Housner 2017).

Opportunities and Challenges
Structural engineering is a conservative field because failures can
result in catastrophic loss of life. To standardize the level of safety
and provide a uniform level of risk across large inventories of infra-
structure, codes and standards have been developed over the last
century to provide guidance for engineers on the minimum require-
ments that must be achieved. Modern technologies including smart
technologies are typically not outlined in these codes and standards.
Even advanced passive systems, such as base isolation, hysteric
dampers, and viscous dampers, require substantial additional con-
siderations prior to field implementation. These requirements,
although possibly appropriate, can result in limited use.

Active sensor–actuator systems are applied in limited applica-
tions across structural engineering due to perceptions that an active
system is inherently unsafe. To overcome perceptions and ensure
safety of reactive systems, the discipline can adopt standards for
redundancies and fail-safe specifications. In the commercial aero-
space industry, for example, it is common practice to use sensors
and actuators to manage flight systems. One of the tenets of the
aerospace industry is that all systems need to be redundant and
fail-safe; that is, if a particular system fails, it fails in a manner that
does not result in the catastrophic loss of the aircraft (Broek 1971;
Federal Aviation Administration 2005; Kundu 2010). Adopting a
fail-safe culture in structural engineering may result in more open-
ness to adopting active sensor–actuator systems. In addition to
these active sensor–actuator systems, developing coordinated and
comprehensive networks of sensors will result in a better system-
wide understanding of the health of structures across inventories of
civil infrastructure. For example, in a network of bridges, having
real-time, networkwide sensor connectivity would help in allocat-
ing resources when repairs and retrofits are needed and in closing
unsafe bridges.

Challenges limit the implementation of systemwide instrumen-
tation. First, the organizations designing and building structures are
often not the occupants or users of the structure. For example, con-
dominium developers have little interest in increasing their capital
costs for long-term benefits that occupants may experience. Sim-
ilarly, although governing agencies may have interests in long-
term, networkwide benefits, it may be difficult to justify increased
capital costs. Furthermore, given the extremely competitive eco-
nomic environment, engineers, contractors, and developers will not
be the ones to advocate for additional technologies that increase
capital costs. Generally, there is a lack of substantive incentives
to incorporate these technologies in the built infrastructure. In this
context, governing bodies could play a role in incentivizing or man-
dating the use of smart technologies in their infrastructure. There
are also practical challenges of developing devices that can be ef-
fectively used as sensors in the field. These issues can relate to the
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availability and reliability of power supplies, data transmission, in-
stallation of equipment as a part of existing construction work-
flows, and maintenance and calibration of equipment.

Role of the Civil Engineer in Developing Smart
Infrastructure Systems

Civil engineers have a unique position and the expertise to envision
integrated frameworks for smart cities of the future. The ASCE
Vision for 2025 (ASCE 2007) calls on civil engineers to adopt cre-
ative roles in the development of the built environment (Table 4). In
the following subsections and summarized in Table 4, each role is
extended to describe how the civil engineering profession can con-
tribute to the development of smart infrastructure programs.

Planner, Designer, Constructor, and Operator of the
Built Environment

First and foremost, civil engineers are charged with planning, de-
signing, constructing, and operating the built environment. Civil
engineers have detailed insight about the physical and dynamic
properties and mechanisms of infrastructure systems, and creativity
is needed to apply this knowledge in the context of smart infrastruc-
ture programs. As the keystone of smart cities is ICT, strategies for
infrastructure planning, design, construction, and operation should
take advantage of new capabilities, including real-time data collec-
tion and real-time control. The role of the civil engineer can be
updated to integrate enabling technologies within infrastructure
designs and plan for the creative use of new data and network
capabilities.

A number of gaps were identified in the preceding literature re-
view. Although the transportation sector, for example, has adopted
a range of smart technologies to improve services, other areas, in-
cluding structures and geotechnical engineering, have lagged in
identifying key areas where connected technologies can improve
performance. For many infrastructure systems, including geotech-
nical, structural, construction, air, and natural water systems, prob-
lems remain in the sparsity of data and sensed observations because

collecting data over a vast area presents technological difficulties.
Sensing skins have been investigated to detect issues in concrete
structures (Hallaji et al. 2014), for example, and these sensor sys-
tems can be used in an integrated system to automatically allocate
resources across a network of structures. Civil engineers should
demonstrate and quantify the utility of having and using big data
for infrastructure planning and operation. Although civil engineers
may not have the expertise to design sensor hardware, they can call
attention to and highlight the need for better technologies, includ-
ing sensors and data transmission, in applications where new data
would have a large impact (Stewart et al. 2018).

For some systems, such as energy, water distribution, and solid
waste, connected sensors have been deployed, and new analysis is
needed to explore how big data could be used to better manage
resources. Rather than seeing measurable improvement in infra-
structure, the availability of big data can create data deluge. For
example, smart meters and AMI have been adopted at an increasing
rate in the water sector, yet few utilities have the tools and strategies
to use data beyond rapidly identifying household-level leaks
(Cominola et al. 2015; Sønderlund et al. 2016). Early engagement
of civil engineering researchers can identify the application of new
data, leading to fewer programs in which data are harvested without
direct application (Al Nuaimi et al. 2015). AMI can provide two-
way communication between consumers and utilities through feed-
back about demands for energy, water, wastewater, and solid waste
services. New knowledge about behaviors and hourly demands can
be used to develop dynamic pricing and serious game programs to
reduce inefficiencies and ultimately improve service. Big data ana-
lytics should be coupled with simulation frameworks to develop
new approaches to better manage and operate infrastructure.

Another capability of new sensing and networking is real-time
control of infrastructure through actuators. Real-time automation
applications are seen in the transportation sector through demand-
based signal control systems, and in the energy sector through
smart thermostats. Civil engineering infrastructure may benefit
from creative development of real-time control technologies across
domains. For example, Mullapudi et al. (2017) demonstrated that
stormwater systems can be managed to improve flood protection

Table 4. Role of the civil engineer for conventional and smart infrastructure programs

Role of the civil engineer Conventional infrastructure programs Smart infrastructure programs

Planners, designers, constructors, and
operators of the built environment

Apply basic engineering tools to
develop infrastructure plans, designs,
and management strategies

Integrate enabling technologies within infrastructure
designs; plan for the creative use of new data and
network capabilities.

Stewards of the natural environment
and its resources

Lead green design efforts; Incorporate
environmental considerations in
cost-benefit and life cycle analyses

Account for energy consumption of data acquisition
and transmission; ensure that new technologies do not
result in social inequity; engage citizens in smart
infrastructure program design and operation.

Innovators and integrators of ideas and
technology across the public, private,
and academic sectors

Lead multifaceted design team in
project delivery

Develop comprehensive plans for smart infrastructure
through collaborations across public, private, and
academic sectors; data science, electrical engineering,
and computer engineering; physical and social
science; and subdisciplines within civil engineering.

Managers of risk and uncertainty
caused by natural events, accidents,
and other threats

Develop appropriate approaches and
designs to manage and mitigate risk to
natural hazards and accidents

Design early-warning systems to improve resilience
to hazards, natural disasters, and slow onset disasters,
such as climate change; adopt new approaches and
design procedures to address security and privacy
risks introduced by connected technologies.

Leaders in discussions and decisions
shaping public environmental and
infrastructure policy

Influence policy to improve
infrastructure maintenance and
accelerate infrastructure construction

Influence the integration of smart technologies that
are sustainable and will lead to measurable
improvement in infrastructure performance, level of
service, and quality of life; adopt data visualization
technologies for communicating with stakeholders.
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through automatic control of flood gates and flood release mecha-
nisms. In the context of geotechnical systems, conditions for bioce-
mentation processes can be automatically controlled to provide
nutrients and moisture. Actuators have historically been used widely
in industrial and infrastructure processes, but widespread application
in distributed infrastructure networks through connected technolo-
gies is limited. Further development, demonstration, and testing
of actuators are needed to avoid catastrophes associated with net-
work failures.

Other enabling technologies, including IoT, crowdsourcing, citi-
zen science, and blockchain, require active citizen participation in
the use of technology. The civil engineer may not possess insight
about how the public may perceive and adopt these technologies
but may provide insight about how the uptake of these technologies
would change infrastructure performance. For example, through
the IoT, personal devices and mobile phones can be used to harvest
and transmit data about behaviors and resource consumption. Re-
search is needed to demonstrate how the IoT, crowdsourced data,
and citizen science data would be used to improve infrastructure
decisions and environmental management.

Civil engineers can explore the use of blockchain for both
industries and households. The efficiency of construction manage-
ment projects can be improved through new bookkeeping capabil-
ities provided by blockchain. Blockchain technology can be used in
combination with smart meters to observe and record household-
level subhourly flows of energy, water, wastewater, stormwater, and
solid waste to facilitate decentralized trading of resources among
households. The integration of new markets within existing re-
source management requires infrastructure and operational designs
developed by civil engineers. In a smart city, consumers may be-
come prosumers, and the effects of new demand and production
patterns on infrastructure should be evaluated through engineering
analysis.

Steward of the Natural Environment and Its Resources

Civil engineers are called to create a sustainable world and enhance
the quality of life through stewarding natural resources. As argued
by Bibri and Krogstie (2017a), smart cities must be sustainable
cities. The energy required to power new sensors, network connec-
tivity, data processing, and blockchain accounting must be assessed
and balanced with the gains provided by new technology. Smart
infrastructure programs that create unsustainable use of natural re-
sources cannot persist, and to survive as a new norm rather than a
passing fad, sustainability must be built into the smart infrastructure
paradigm. With population growth and urbanization, smart cities
may continue to exert increasing energy demands. Smart cities
should seek to develop innovative and context-based energy port-
folios, such as distributed renewable resources. Geotechnical engi-
neering and coastal and ocean engineering are domains within civil
engineering that have been only marginally involved in smart cities
programs to date. Geothermal energy is a clean energy source that
can be developed for urban energy sources (Barbier 2002).

Offshore areas also provide innovative solutions for energy re-
sources for cities located near ports (Byrne and Houlsby 2003;
Randolph et al. 2005) because wave power is available more reli-
ably than other renewable energy sources, such as wind and solar
power. Hydrokinetic energy can be harvested from moving sea-
water including ocean surface waves, tidal motions, and large-scale
currents (Yang and Copping 2017; Imawaki et al. 2013). The ex-
ploitation of marine energy is limited by losses in efficiency of
energy conversion due to inconsistencies in electricity generation
because tidal, wind, and wave sources move in multiple directions
with different intensities (Drew et al. 2009). In addition, constructing

facilities to generate marine energy is difficult because most of the
infrastructure must be placed underwater. Civil engineers can pro-
vide the expertise to design and develop new infrastructure to support
a diverse portfolio of alternative energy resources.

The ASCE 2025 vision focuses on green design as a component
of sustainability, yet sustainability must encompass more than envi-
ronmentally friendly programs. Namely, sustainability must include
societal improvements in the quality of life across diverse sectors of a
population. The smart cities paradigm has been criticized for further
marginalizing populations that have been historically underserved
(Martin et al. 2018). Technology-led development results in an in-
creasing call for technological solutions as a panacea (Grossi and
Pianezzi 2017) and considers economics as the primary driver, above
political and social issues (Hollands 2015). Smart cities have been
dominated by information technology groups that focus on the ap-
plication of data analytics for big data, leaving little opportunity for
citizens to participate in a democratic environment. Smart infrastruc-
ture programs must increase equitable access to resources and infra-
structure services, rather than create disadvantages for marginalized
groups or sectors of the population that do not use smart phones or
personal devices (Albert 2019). Civil engineers have extensive ex-
perience in the formulation and solution of multiobjective problems.
Similar to smart infrastructure, infrastructure and environmental
planning problems pose trade-offs among competing economic,
environmental, and social objectives.

Civil engineers must assess the effects of smart infrastructure
design decisions on the quality of life for different sectors of
the population. For example, the design of smart infrastructure pro-
grams requires a realistic assessment of how a lack of access to
mobile devices or internet services for some individuals can affect
their access to civil engineering services. Additionally, smart cities
can place people even further from nature (Colding and Barthel
2017) because technology removes individuals from the natural
environment. Smart infrastructure programs should be designed
to provide green spaces and both tangible and intellectual connec-
tion with the natural environment.

Finally, the introduction of private driverless vehicles may cre-
ate an elite group of citizens who commute from remote locations
to urban centers (ASCE 2019), whereas public driverless vehicles
can significantly improve the mobility of disadvantaged segments
of the population (Docherty et al. 2018; Thakuriah et al. 2017;
Fagnant and Kockelman 2015). A large number of government and
community-based partnerships with transportation network compa-
nies (such as Lyft and Uber) have recently set to develop and operate
pilot programs to provide affordable access to transit, food, medical
services, and employment for transportation disadvantaged individ-
uals, including seniors, individuals with disabilities, and late night-
shift workers. Overall, a systems-level perspective is needed to
evaluate smart infrastructure programs within the context of other
urban needs and allocate funds appropriately.

Citizen engagement beyond data collection and connection
through the IoT is needed, and the civil engineer should be aware
of how smart infrastructure programs will engage citizens. Because
smart cities programs have been led and developed by groups with
technology interests, renewed efforts are needed to ensure that ac-
tual community needs are met and that citizens feel ownership in
smart infrastructure programs. To better engage the public in
crowdsourcing and citizen science programs, well-defined incen-
tivization protocols must be designed and implemented to increase
participation (Hoh et al. 2012). Better sensor technology and sim-
ple field experiments may increase the number and diversity of
environmental and infrastructure properties that can be measured
by the public. Collaborative development of policies and technol-
ogies can be enriched through participation of local constituents
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through hackathons, and citizens may feel ownership of infrastruc-
ture and policies through their involvement. The way that citizens
are engaged can affect the types of data that are collected, and en-
gagement programs should be included in the conceptualization of
smart infrastructure design.

Innovator and Integrator

The vision for the civil engineering profession forecasts that civil
engineers will integrate across public, private, and academic sectors
in infrastructure planning and management. This integration is ar-
guably even more important for smart cities. Technology is typi-
cally developed by private entities, and it must be intentionally
integrated and managed within a public-policymaking agency. En-
gineering research is needed to design strategies for efficient inte-
gration within infrastructure management programs and to analyze
environmental and social research impacts of smart infrastructure
programs.

Beyond the vision laid forth by ASCE, other collaborations are
needed for smart infrastructure. First, integrated smart systems
should enact a train of smart technologies, which need to operate
in concert. For example, sensor-enabled objects promise to be
the future of networked infrastructure, but they must be enabled
by fast network connections. Big data analytics are needed to
elicit usable information and decision making from big data sets,
and automated decision making can be implemented in real-time
through actuators. Integrating across smart technologies requires
an understanding of diverse technologies and collaboration across
areas of expertise. Civil engineers should have an understanding
of these technologies and analytical approaches to collaborate ef-
fectively with engineers and scientists with expertise in sensors,
computational systems, and data analytics.

As described in the preceding paragraphs, civil engineers need
an understanding of how different technologies and programs affect
sectors of the population to responsibly design and manage smart
infrastructure systems. Collaborations with social scientists are
needed to understand smart infrastructure as a sociotechnical sys-
tem, in which citizen engagement, urban innovation, and entrepre-
neurialism interact with how ICT can transform urban systems
(Neirotti et al. 2014; Cosgrave 2018; Esmaeilian et al. 2018). For
example, consumers may act heterogeneously when interacting
with crowdsourcing platforms, new data that are available through
smart meters and AMI, and electricity market structures that are
available through distributed energy technology. Complex decision
making by heterogenous individuals arranged in a variety of hier-
archical organizations can create unexpected outcomes in system
performance.

New sociotechnical tools can contribute an understanding of the
emergent performance of smart infrastructure. For example, agent-
based modeling is a tool that civil engineers have used to simulate
the decision-making processes that influence the adoption of new
technologies (Zhang and Vorobeychik 2017) and the use of smart
technologies (e.g., Strickling et al. 2020) in the context of infra-
structure systems. These models can leverage real-time social and
infrastructure data to forecast decision-making behaviors and the
performance of smart infrastructure systems.

Civil engineers must also gain an integrated view of infrastruc-
ture itself as a system of systems. Critical gains in efficiency of
infrastructure can be found through coordinating across infrastruc-
ture systems. For example, both water and energy are scarce resour-
ces and can be managed through an integrated approach, where
excess energy can be stored within water systems or excess pres-
sure can be converted to electricity (Carravetta et al. 2012).

The program initiated by New York City provides an example of
a comprehensive effort across many infrastructure systems, includ-
ing smart buildings, water, transportation, mobility, energy, envi-
ronment, public health, safety, government, and community (NYC
Mayor’s Office of Tech + Innovation 2015). In the transportation
sector, real-time traffic information from microwave sensors and
video cameras is used to reduce congestion and improve traffic
flow. Drinking water customers are connected with wireless water
meters that transmit consumption data four times per day (Sklerov
and Saucier 2010). An early-warning remote monitoring system for
water quality was established using fixed sensors, and a citizen-led
water quality monitoring program analyzes pathogens in local riv-
ers and lakes (NYC Water Trail Association 2019). The electric
utility installed smart energy meters, providing access to detailed
information about daily energy use, outages, and the status of re-
newable resources (con Edison Company 2019). The city deployed
trash bins with integrated solar-powered compaction and real-time
trash -evel detection sensors. Stationary and mobile air quality
monitors are enhanced through a people-centric IoT network of
smart mobile devices and fixed street-side air quality sensors that
were deployed to examine human exposure to urban air pollution
(NYC Mayor’s Office of Tech + Innovation 2015).

New York City also recently launched a citywide network of
kiosklike structures and free Wi-Fi access (Sinky et al. 2018) and
expanded the availability of public computer centers in the city’s
highest poverty areas. These efforts have improved broadband serv-
ices, increased digital literacy, and created digital inclusion for
those in underserved areas. To analyze the complex interactions
in urban neighborhoods, New York City launched three different
Quantified Communities. Each Quantified Community contains
a network of instrumented neighborhoods that collect, measure,
and analyze data on physical and environmental conditions and hu-
man behavior to ascertain how the built environment affects social
well-being (Kontokosta et al. 2016).

Smart cities efforts should also integrate across geographic
scales and legal jurisdictions. For example, Cleantech San Diego
currently leads a collaborative effort among public, private, and
academic organizations to deploy IoT technologies, improve urban
connectivity, reduce greenhouse gas emissions, increase water and
energy efficiency, and stimulate economic growth in the San Diego
region of California. Participants of the program include five neigh-
boring cities, the County of San Diego, Qualcomm, AT&T, Cisco,
San Diego Gas & Electric, Black & Veatch, General Electric, and
the University of California, San Diego (Cleantech San Diego
2019). Energy, water, and transportation systems may provide re-
sources across a group of cities, and movements to smarten infra-
structure may be enhanced through cooperation.

Manager of Risk and Uncertainty

The 2025 vision describes engineers as managers of risk and un-
certainty that arise due to threats of natural disasters and terrorist
activities. Civil engineers can utilize smart infrastructure programs
to improve community resilience to hazards, natural disasters, and
slow onset disasters, such as climate change. Smart technologies
are noted for their abilities to improve community resilience
through the IoT to establish early-warning systems (Loftis et al.
2018). The use of social media and online platforms during disas-
ters can improve public response, dissemination of information,
rescue operations, and analysis of incoming calls (Vikas 2017;
Grasic et al. 2018). Sentiment analysis on social media can provide
real-time information for emergency assessment. Efficient encryp-
tion of personal data, such as water use, energy use, and location,
can be used to update infrastructure operations during hazards,
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emergencies, or times of shortage, such as drought. Existing mea-
sures for encrypting data are computationally expensive, and
fast-paced encryption can be developed through blockchain tech-
nologies. Integration of updated demand patterns within a digital
twin can provide immediate insight about infrastructure perfor-
mance and forecasts of cascading failures.

In addition to threats introduced by natural and intentional disas-
ters, cities can become vulnerable to breaches of both privacy and
security for participating constituents through new technologies
(Colding and Barthel 2017). As an example, cryptojacking hijacks
and re-purposes computational resources used by utility systems,
such as SCADA networks, for mining cryptocurrency (Newman
2018). Other recent cybersecurity incidents in critical infrastruc-
ture systems sectors highlight the need for cybernetic infrastruc-
ture threat management strategies (Janke et al. 2014). Enabling
common appliances and devices with connectivity creates new
vulnerabilities for malicious activities by increasing the attack
surface of cyber-physical environments. Privacy and security risks
are major limitations for the implementation of IoT, data visuali-
zation, and blockchain technologies because sharing data across
multiple computing platforms, data collection procedures, and
simulation models can create vulnerabilities in data protection.

Additionally, many infrastructure systems access private data,
such as household water, solid waste, and energy use, and secure
infrastructure data, such as location of pipelines, which should be
protected from malicious use. In the context of household-level
consumption data, utility managers may not be considered trusted
agents by customers because of the potential incentive for manag-
ers to monetize their personal data. For example, if water efficiency
gains from using smart water flow sensors reduces utility revenues,
data about household-level water consumption may be sold to
third-party organizations for targeted advertising (Boyle et al. 2013;
Freed 2019).

Managing privacy threats in a smart cities environment is a
multifaceted operation that is needed to ensure the confidentiality
of sensitive information and to shield citizens from unsolicited ad-
vertisements or threats to personal safety. Privacy is influenced
by infrastructure, information technology, business practices, and
physical environments, and, therefore, privacy measures must be
embedded holistically into design specifications. Specifically, civil
engineers must adopt a privacy-by-design approach, in which infra-
structure and data management practices include tools and native
protocols for protecting personal information from breaches or data
leakage. Best practices should minimize the use of security patches
and second-layer solutions, which can further compromise privacy
(Cavoukian et al. 2010). Civil engineers may consider privacy-
enhancing technologies and practices, such as anonymous com-
munication networks, end-to-end encryption, aggregation with
homomorphic encryption, and statistical disclosure control for data
sets (Rebollo-Monedero et al. 2014). Utilities may also consider the
use of cryptographic mechanisms in recording and communicating
consumption data (Rebollo-Monedero et al. 2014). Developing a
robust privacy threat management portfolio will allow civil engi-
neers to create a smart infrastructure programs that achieve gains
in infrastructure management without compromising the personal
privacy and safety of citizens and utility customers.

Leader in Discussions and Decision Making

ASCE has called on civil engineers to lead discussion and decisions
shaping environmental and infrastructure policy. Regulations, pol-
icy, and funding around enabling technologies will drive the imple-
mentation of smart infrastructure. Funding and policy decisions at
municipal levels are required to update infrastructure through, for

example, programs that improve data collection about municipal
solid waste using smart sensors and reduce traffic congestion using
intelligent traffic control systems. Other policy decisions are re-
quired to support transitions in infrastructure operations and allow
consumers to become prosumers. For example, decentralized en-
ergy markets will alter energy flows in the electric grid, and regu-
lation is needed to ensure that households that invest in smart
technology will not be limited by large infrastructure conglomer-
ates. Regulations are also needed to restrict the unfettered use of
personal data by technology-based companies that install sensing
systems and to protect privacy of individuals. Guidelines are
needed to ensure that new technologies, such as driverless cars,
are adopted by municipalities in such a way that does not exclude
segments of the population, but instead improves services to mar-
ginalized groups.

Engineering analysis and simulations can guide policy decisions
for smart infrastructures. Much of the smart city discourse, how-
ever, has been led by technology-based groups, with a focus on
the use of specific technologies rather than a view to improve infra-
structure performance and community well-being at large. Civil en-
gineers can provide further leadership in evaluating and prioritizing
the gains in municipal services. For example, only 11.5% of 104
awards from 2011 to 2018 made in the area of the Smart and Con-
nected Communities Program through the National Science Foun-
dation were awarded to principal investigators whose expertise is in
civil engineering (program element code = 033Y for data retrieved
from the National Science Foundation 2020). Civil engineers can
bring a broader vision to see technologies more widely adopted
within urban infrastructure planning and to see these technologies
have an impact on quality of life and infrastructure efficiency. By
taking a leading voice, civil engineers can design the programs that
will address some of the criticisms associated with smart infrastruc-
ture programs and achieve sustainability for the environment and
society.

Communicating designs for vast infrastructure and environmen-
tal systems as they are integrated with personal devices and deci-
sions is a complex task. Civil engineers can adopt and integrate
new data visualization technologies, such as virtual reality and aug-
mented reality, to aid in communicating advanced technological
ideas with stakeholders. Immersive environments can provide deci-
sion makers with a more tangible concept of infrastructure designs.
Currently these environments are computationally complex to con-
struct, and further research is expected to develop accessible sys-
tems that can be readily applied to new projects.

Conclusions

This paper has explored enabling technologies that have been de-
veloped for smart cities applications and the use of these technol-
ogies in smart infrastructure programs. By providing a description
of the available technologies and a review of applications of smart
technologies for civil engineering infrastructure, gaps have been
identified where the civil engineering profession can apply creativ-
ity to improve deficiencies in urban infrastructure. In some subdis-
ciplines of civil engineering, such as geotechnical engineering,
structures, air quality, construction management, and natural water
systems, new efforts are needed to develop distributed and con-
nected sensors and data transmission technology to provide the spa-
tial and temporal coverage needed to support analytics for decision
making. It has been shown that innovative strides have been made
in some sectors, including the transportation, energy, and water
supply sectors, to develop sensors and data transmission technol-
ogies. Innovative research is needed to demonstrate how new data
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can be further used to support decision making through data ana-
lytics and simulation studies.

Technologies that rely on significant engagement of citizens,
including the IoT, crowdsourcing, citizen science, and blockchain,
require further research and development to demonstrate the advan-
tage of having new streams of personal data; the level of engage-
ment needed within a community; the effect of decentralized
markets on existing infrastructure; and the disparity of access to
infrastructure services that can result from connected technologies.
Data visualization technologies provide new capabilities that can
aid decision making for urban systems, and they require further
demonstration to improve adoption among municipal decision
makers.

ASCE has developed a vision for the civil engineering profes-
sion in 2025, and that framework has been applied here to highlight
roles for the civil engineer in developing smart infrastructure
programs:
• Through their expertise, civil engineers can identify ready

applications of sensing, ICT, IoT, data visualization, actuators,
big data analytics, and blockchain technologies to improve the
delivery of urban resources and services.

• In stewarding a sustainable world, civil engineers must account
for both the environmental and societal impacts of smart infra-
structure applications. The energy requirements associated with
connected technologies need to be evaluated in the context of
the services provided by these technologies. New research is
needed to spur on the development and penetration of alterna-
tive energy sources for municipal energy portfolios. As part of
sustainability considerations, civil engineers should also evalu-
ate the effect that new technological solutions may have on di-
verse segments of the population. Many studies and applications
reviewed here find that citizens, rather than technologies, should
drive the design of projects, and smart cities have historically
been criticized for the potential to further marginalize under-
served populations. Civil engineers need to be aware of the
potential for conflicting objectives among infrastructure perfor-
mance, technology adoption, economic costs, environmental
impacts, and individual quality of life when designing new in-
frastructure programs.

• Civil engineers should integrate across a number of sectors to
develop smart infrastructure programs. First, public, private, and
academic partnerships are needed to develop and research the
technologies and regulations for smart infrastructure. Civil en-
gineers should also work across computational and data science
domains to develop infrastructure programs that utilize big data,
data analytics, and advanced technologies. Integration across
physical and social sciences is needed to assess and account
for environmental and social impacts described herein. Finally,
integration across infrastructure systems is needed to share com-
puting platforms and maximize gains in efficiencies across in-
frastructure sectors.

• Civil engineers should manage exiting risks and new risks
introduced through smart infrastructure programs. Smart tech-
nologies provide new capabilities to respond more readily to
disasters through, for example, IoT-based early-warning sys-
tems. The introduction of smart technologies can create new
vulnerabilities in the privacy and security of individuals and
households, and designers must be aware of and mitigate these
risks through privacy by design principles. Through these prac-
tices, tools for protecting personal information are introduced at
early stages of smart infrastructure design.

• Finally, civil engineers can take a lead in smart infrastructure
discussions and policy development. The technical knowledge
and passion for civil betterment position the civil engineering

profession to contribute heavily to smart infrastructure pro-
grams. Civil engineers can integrate data visualization in devel-
oping tools for communicating infrastructure and environmental
systems with stakeholders.
Historically, civil engineering infrastructure has not relied

heavily on ICT and big data analytics in managing infrastructure
networks. These tools can be developed and applied across civil
engineering domains to improve management of diverse systems.
Further, new application can develop tools and methodologies to
manage interdependent systems and the complexities of interac-
tions among sectors, such as water, power, and transportation net-
works, and to achieve new levels of service and efficiency. The rise
of smart technologies that enable smart cities, including sensing,
big data analytics, data visualization, IoT, and blockchain technol-
ogy, can create a sea change in the way that urban services are re-
ceived, monitored, and managed. Creativity is needed to integrate
across infrastructure systems and to take advantage of the capabil-
ities provided by new technologies. Ultimately, the authors hope to
inspire inventive thoughts in readers as they develop research agen-
das within their own disciplines of expertise.

Data Availability Statement

No data, models, or code were generated or used during the study.
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